材料加工过程实验建模方法,简单实验设计
- 格式:pptx
- 大小:2.45 MB
- 文档页数:35
第一部分:铸造过程的数值模拟1.1概述铸造工艺历史悠久,但长期以来只是一种手工艺经验积累,近代逐渐成为一门工程技术,但仍缺乏完整的科学体系[1-3]。
铸件凝固及其相应的铸型充填是铸造工艺的基本技术问题,大部分铸造缺陷产生于这一过程或与之密切相关,但由于该项研究问题复杂、难度较大,在实际生产中不得不更多地依赖于经验。
液体金属进入型腔之后,流态和温度是如何变化的,凝固是如何进行的,缺陷是如何生成的,这些对铸造工作者来说还带有相当的盲目性。
如何把它们计算和描绘出来,优化出最佳方案并形成工艺文件,尽可能以较少人力、物力生产出优质铸件,这就是铸件凝固数值模拟的主要任务[2]。
该学科是材料发展的前沿领域, 是改造传统铸造产业的必由之路。
经历了数十年的努力, 铸件充型凝固过程计算机模拟仿真发展已进入工程实用化阶段, 铸造生产正在由凭经验走向科学理论指导。
铸造充型凝固过程的数值模拟, 可以帮助工作人员在实际铸造前对铸件可能出现的各种缺陷及其大小、部位和发生的时间予以有效的预测,在浇注前采取对策以确保铸件的质量, 缩短试制周期, 降低生产成本。
1962年丹麦的Forsund把有限差分法用于铸件凝固过程的传热计算,从此铸造工艺揭开了计算机优化的序幕。
电子计算机在铸造生产中得以应用,目前主要在生产管理和数据处理、生产过程自动化控制以及铸造工艺辅助设计等领域,而用计算机模拟仿真逐步代替传统的经验性研究方法,已成为21世纪铸件成形技术的发展趋势之一[3]。
数值模拟技术经过数十年的发展,已经步入工程实用化阶段。
1989年, 世界上第一个铸造CAE商品化软件在德国第7届国际铸造博览会上展出, 它以温度场分析为核心内容, 在计算机工作站上运行, 是由德国Aachen大学Sahm教授主持开发的, 被称之为MAG2MA软件。
同时展出的还有英国FOSECO公司开发的Solstar软件, 它可在微机上运行, 但对有限元分析作了极大的简化。
大型汽车工程部件注塑成型实验报告一、实验目的1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。
2、介绍塑件各种成型瑕疵的构成机理,以及各工艺参数对各种瑕疵构成的影响大小。
3、初步介绍压铸成型分析软件moldflow的各项功能及基本操作。
4、初步介绍ug软件三维建模功能。
5、初步介绍ug软件三维模具设计功能。
二、实验原理1、moldflow压铸成型分析软件的功能十分齐全,具备完备的分析模块,可以分析出来压铸成型工艺中各个参数例如塑件材料、成型压力、温度、口服速度、浇筑系统等因素对成型质量的影响,还可以模拟出成型瑕疵的构成,以及如何改良等等,还可以预测每次成型后的结果。
2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。
最后通过公式的分析和计算,就可以得出结果。
三、实验器材硬件:计算机、游标卡尺、注塑机、打印机软件:ug软件、moldflow软件四、实验方法与步聚1、ug软件模型创建和模具设计(已省却);2、启动moldflow软件;3、新建一个分析项目;4、输出分析模型文件;5、网格分割和网格修正;6、流道设计;7、冷却水道布置; 8、成型工艺参数设置; 9、运转分析解器; 10、制作分析报告11、用试验模具在注塑机上进行工艺试验(已省去);12、分析演示分析报告(省却与实验结果相比较这一步骤); 13、得出结论五、前置处理相关数据 1.网格处理情况1)展开网格确诊,可以看见网格重合和最小四海比等问题; 2)网格确诊,并依次修正存有的网格问题; 3)修正回去后,再次检查网格情况。
2.材料选择及材料相关参数在在方案任务视窗里双击第四项材料,插入例如图材料挑选窗可直接选常用材料,也可根据制造商、商业名称或全称搜索3. 工艺参数设置双击方案任务视窗里的“成型条件设置”,这里直接用默认值。
《材料成型综合实验》3D打印实验报告实验一、实验目的1、掌握快速成型加工原理、方法及在模具加工中的应用;2、了解快速成型机床的组成、工作原理和操作方法。
二、实验仪器HTS-400pl快速成型机、树脂丝材、计算机等三、实验原理3D打印即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉未状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
RP技术基本原理:离散—堆积(叠加)。
3D打印技术与激光成型技术基本上是一样的。
简单来说,就是通过采用分层加工、迭加成形,逐层增加材料来生成3D实体。
称它为“打印机”的原因是参照了其技术原理,3D打印机的分层加工过程与喷墨打印机十分相似。
首先是运用计算机设计出所需零件的三维模型,然后再根据工艺需求,按照一定规律将该模型离散为一系列有序的单位,通常在Z向将其按照一定的厚度进行离散,把原来的三维CAD模型变成一系列的层片;然后再根据每个层片的轮廓信息,输入加工参数,然后系统后自动生成数控代码;最后由成型一系列层片并自动将它们连接起来,最后得到一个三维物理实体。
四、实验过程基本过程如下:对要打印的零件进行三维建模,绘制三维图形,保存STL通用格式。
用3D打印软件打开保存的STL格式的零件,在3D打印软件中设置相关打印参数,生成路径。
将3D软件生成的GSD格式用插卡的形式放在打印机里。
随后启动打印机即可。
实验的详细过程如下:首先进行的三维模型构建经常使用的软件有Pro/E、UG、SolidWorks、激光扫描、CT断层扫描等。
然后要对三维模型做近似处理,也就是用三角形平面来逼近原来的模型(STL文件)。
近似处理后进行切片处理,即对加工方向(Z方向)进行分层(间隔一般取0.05m--0.5mm,常用0.1mm )。
之后进行打磨、抛光、涂挂、烧结等后处理步骤。
最后成型加工。
成型头(激光头或喷头)按各截面轮廓信息扫描。
其中分解(离散)过程由计算机完成,组合(堆积)过程由成型机完成,后处理过程中的结构与性能的加强由其他辅助设备完成。
第1篇一、实验目的1. 熟悉模型制作的基本流程和方法。
2. 提高动手能力和空间想象力。
3. 学习使用模型制作工具和材料。
二、实验原理模型制作是将现实中的物体或场景以缩小的形式表现出来,通常用于展示、教学、研究等目的。
模型制作的过程包括设计、制作、组装、涂装等多个环节。
三、实验材料与工具1. 材料:A4白纸、泡沫板、塑料泡沫、胶水、剪刀、铅笔、直尺、画笔、喷漆等。
2. 工具:美工刀、剪刀、砂纸、螺丝刀、尺子、胶枪、喷枪等。
四、实验步骤1. 设计阶段(1)确定模型主题和比例。
(2)绘制模型草图,包括物体轮廓、细节、色彩等。
(3)确定模型尺寸和材料。
2. 制作阶段(1)按照草图裁剪泡沫板,制作出物体基本形状。
(2)使用美工刀和砂纸修整泡沫板,使形状更加准确。
(3)用胶水将泡沫板粘合,确保连接牢固。
(4)用铅笔在泡沫板上勾勒出物体细节,如门窗、纹理等。
(5)用画笔在物体表面涂上底漆,使颜色更加鲜艳。
3. 组装阶段(1)将制作好的泡沫板零件按照设计图纸进行组装。
(2)使用螺丝刀将零件固定,确保组装牢固。
(3)检查组装好的模型,如有松动或变形,及时进行调整。
4. 涂装阶段(1)用喷枪对模型进行喷漆,注意喷漆距离和角度。
(2)根据需要调整喷漆颜色和厚度。
(3)待第一层漆干透后,进行第二层喷漆。
5. 后处理阶段(1)检查模型整体效果,如有不足之处,进行修正。
(2)对模型进行打蜡处理,提高光泽度。
(3)将模型放置在展示架上,进行展示。
五、实验结果与分析1. 成功完成了一个以城市景观为主题的模型制作。
2. 在制作过程中,掌握了模型制作的基本流程和方法。
3. 提高了动手能力和空间想象力。
4. 学习了使用模型制作工具和材料。
六、实验总结本次实验通过模型制作,使我们对模型制作的基本流程和方法有了更深入的了解。
在实验过程中,我们遇到了各种问题,如材料选择、工具使用、细节处理等。
通过不断尝试和调整,我们成功完成了模型制作。
此次实验不仅提高了我们的动手能力和空间想象力,还让我们学会了如何解决问题和团队协作。
泡沫铝材料的制备与有限元模拟泡沫铝材料是一种轻质、高强、具有良好吸声和隔热性能的新型功能材料。
由于其独特的优点,泡沫铝材料在许多领域都具有广泛的应用前景,如汽车、航空航天、建筑和国防等。
因此,研究泡沫铝材料的制备技术与有限元模拟对其性能的影响具有重要意义。
泡沫铝材料的制备方法主要有物理发泡法、化学发泡法和机械搅拌法等。
其中,物理发泡法是最常用的方法,其工艺流程如下:将混合物放入模具中,置于一定温度和压力条件下;发泡剂分解产生气体,导致混合物膨胀,形成泡沫铝材料;通过观察泡沫铝材料的泡孔结构,发现泡孔大小、分布和密度等因素对其性能有较大影响。
同时,泡沫铝材料的力学性能也表现出明显的各向异性,其中沿垂直于泡孔方向的性能较好。
有限元模拟是一种常用的数值分析方法,可以用来预测泡沫铝材料的性能。
在有限元模拟过程中,需要选择合适的材料模型、边界条件和有限元软件。
其中,材料模型需要考虑泡沫铝材料的弹性模量、泊松比和密度等参数;边界条件需要考虑材料的受力情况;有限元软件可选择ANSYS、SolidWorks等。
通过有限元模拟,可以得出泡沫铝材料的应力、应变和疲劳寿命等性能指标。
在应力分析中,发泡剂的加入使得泡沫铝材料的应力水平显著降低;在应变分析中,泡沫铝材料的应变主要发生在泡孔内,并且沿泡孔方向的应变最大;在疲劳寿命分析中,泡沫铝材料的疲劳寿命随着泡孔密度的增加而降低。
通过对泡沫铝材料的制备与有限元模拟研究,发现制备过程中的发泡工艺对泡沫铝材料的性能具有重要影响。
同时,有限元模拟结果表明,泡沫铝材料的应力、应变和疲劳寿命等性能指标受到泡孔结构、密度等因素的影响。
然而,目前的研究还存在一些不足之处,如制备过程中工艺参数的控制、有限元模拟中材料模型的精度等问题需要进一步探讨。
为了更好地应用泡沫铝材料,未来的研究方向可以从以下几个方面展开:优化制备工艺:进一步研究发泡工艺中的关键参数,如发泡剂类型、温度和压力等对泡沫铝材料性能的影响,为实现制备过程的优化提供依据。
数控铣床零件加工工艺分析与程序设计毕业论文一、综述在我们的日常生活中,数控铣床扮演着至关重要的角色。
它就像是一个精密的工匠,能够按照我们的需求,打造出各种复杂的零件。
那么如何更好地利用数控铣床进行零件加工呢?这就是我们今天要探讨的主题——数控铣床零件加工工艺分析与程序设计。
当我们面对一个需要加工的零件时,首先需要考虑的是这个零件的工艺分析。
这就像我们做饭前要有个菜谱一样,知道要先放什么,后放什么才能让饭菜更美味。
对于数控铣床来说,工艺分析就像是它的“菜谱”。
我们需要了解这个零件的材料、形状、大小以及加工要求等等,才能决定如何切削、切削的深度、切削的速度等等。
这一步非常关键,因为它直接影响到后续加工的质量和效率。
接下来就是程序设计了,这一步就像是给数控铣床写“指令”。
我们知道数控铣床是通过计算机控制的,那么我们需要把工艺分析的结果转化为计算机能理解的指令。
这个过程需要专业的知识和技能,因为每一个指令都会直接影响到零件的加工效果。
写指令的过程中,我们要考虑到刀具的路径、切削的速度、换刀的时间等等,确保每一步都准确无误。
1. 背景介绍:数控铣床在现代制造业中的地位和作用走进现代化的制造车间,我们总能被那些精密的机械设备所吸引。
其中数控铣床凭借其独特的优势,在现代制造业中占据了举足轻重的地位。
它不仅仅是一台机器,更是制造业的得力助手,工业发展的得力干将。
数控铣床简单来说,就是一台通过数字化程序控制来进行零件加工的机器。
它的作用可大了去了,在现代化的生产线上,零件的精度和效率要求越来越高,这时候数控铣床就派上了用场。
它可以根据预设的程序,精确地加工出各种复杂形状的零件。
想象一下没有数控铣床的话,很多精密的机械设备可能就无法生产出来,我们的日常生活也会因此受到很大的影响。
可以说数控铣床是现代制造业的“得力助手”。
从汽车、飞机到电子产品,几乎所有的制造行业都离不开它。
随着科技的发展,数控铣床的功能也越来越强大,不仅能加工出更精密的零件,还能提高生产效率。
第1篇实验名称:模型制作实验实验目的:通过本次实验,掌握模型制作的基本步骤和技巧,提高动手操作能力,培养创新思维。
实验时间:2021年X月X日实验地点:实验室实验材料:木板、铅笔、刻刀、砂纸、胶水、剪刀、尺子、绘图工具等实验步骤:1. 设计模型:根据实验要求,设计出所需模型的基本形状和尺寸。
在纸上绘制出模型的设计草图,标明各个部分的名称和尺寸。
2. 准备材料:根据设计草图,准备好所需的木板、铅笔、刻刀、砂纸、胶水、剪刀、尺子、绘图工具等材料。
3. 放样:将设计草图放大至实际尺寸,放在木板上,用铅笔在木板上勾勒出模型各个部分的轮廓。
4. 切割:用刻刀按照放样时的轮廓将木板切割成所需形状。
注意切割时要保持稳定,避免划伤手指。
5. 砂磨:将切割好的木板表面进行砂磨,去除毛刺和切割痕迹,使表面光滑。
6. 组装:将砂磨好的木板按照设计草图进行组装。
使用胶水将各个部分粘合在一起,确保连接牢固。
7. 装饰:在模型表面进行装饰,如涂漆、贴纸等。
根据设计要求,选择合适的颜色和图案。
8. 完成作品:检查模型的整体效果,确保各个部分连接牢固,表面光滑,装饰美观。
实验结果:经过以上步骤,成功制作出所需模型。
模型外观美观,结构牢固,符合设计要求。
实验心得:1. 在设计模型时,要充分考虑实际需求,合理规划模型的结构和尺寸。
2. 在制作过程中,注意安全,避免划伤手指。
3. 切割和砂磨是模型制作的关键步骤,要掌握好技巧,确保模型表面光滑。
4. 组装过程中,要确保各个部分连接牢固,避免出现松动现象。
5. 装饰是模型制作的重要组成部分,要选择合适的颜色和图案,使模型更加美观。
6. 在实验过程中,遇到问题要及时请教老师和同学,共同解决。
实验总结:本次实验使我对模型制作的基本步骤和技巧有了更深入的了解。
通过实际操作,提高了我的动手能力和创新思维。
在今后的学习和生活中,我会将所学知识运用到实际中,不断提高自己的综合素质。
第2篇一、实验目的本次实验旨在通过实际操作,学习模型制作的基本原理和方法,提高动手能力和创造力,为后续相关课程的学习打下基础。