第十三章 振动分析的矩阵迭代法
- 格式:ppt
- 大小:2.32 MB
- 文档页数:97
线性振动理论和振动近似解法简略史摘要:读史使人明智,本文意在对线性振动理论和工程振动近似解法的发展做简要明了的阐述,其中线性振动理论史以科学家对具体模型的解答为路线,依次阐述:单摆、弦线、梁、膜、板壳、三维弹性体理论、激励响应和强迫振动理论。
工程近似解法以时间为顺序依次阐述各近似解法,依次简要阐述:邓克莱法、逐步近似法、阵型叠加法,传递矩阵法、瑞立法、里茨法、有限元法。
部分近似解法做了较为详细的解释。
关键词线性振动近似解法简略史1线性振动理论1.1单摆单摆是最早引起人们注意的振动之一,真正对单摆的研究要追溯到16世纪,早在1581年,伽利略发现了摆的等时性,之后科学家对单摆的研究主要就是计算摆的周期,当然也包括伽利略本人。
伽利略在1638年用落体公式推得摆动周期正比于摆长与重力加速度比的平方根,还从能量的角度讨论摆的周期,但始终没得到正确的比例系数。
结束摆周期的计算是在17世纪中后叶,惠更斯利用几何方法,得到摆振动周期的正确公式。
1678年牛顿在其划时代的《自然哲学的数学原理》中建立运动变化与受力的关系,使振动问题的动力学研究成为可能,假设了介质阻力与速度及速度平方成正比,形成阻尼概念的雏形,在1728年欧拉考察了摆在有阻尼介质中的运动建立并求解了相应的二阶常微分方程,至此单摆在无阻尼和有阻尼的条件下的周期计算基本结束,后期对摆的研究主要集中在摆的大幅振动和其具有的非线性特征。
1638年伽利略摆动周期正比于摆长与]重力加速度比的平方根,即:T二1LJ(1673年伽利略利用几何方法得到单摆振动周期的正确公式\准确解:T二4j(l/g)*K(sin(a/2))广1728年欧拉建立并求解了摆在有阻尼、介质中的运动相应的二阶常微分方程I)图一单摆周期的发现及求解简略图1.2弦线在振动力学研究兴起之前,有两个典型的振动问题引起注意,一个是单摆摆动,另一个就是弦线振动。
弦线振动是无穷多自由度连续系统的振动,单摆摆动是单自由度离散系统的振动,振幅不大时都可认为是线性的。
《机械振动》教学大纲一、课程基本信息二、课程目的和任务《机械振动》是理论与应用力学等力学类本科专业必修的专业课程,同时也是机械、土建等工程学科本科和研究生培养的一门专业基础课程。
《机械振动》是一门系统地研究自然界和工程技术领域中振动现象的产生机理、运动规律、描述和控制方法的科学。
本课程教学应立足于加强学生的振动力学基础理论素养和相关基本技能培养,并着眼于拓宽学生的相关工程背景,提高科学建模能力,为今后学生能够创造性的从事相关理论研究或工程技术实践奠定必要的基础。
三、本课程与其它课程的关系本课程学习所需的主要选修课程为微分方程、矩阵理论、概率与统计、理论力学、材料力学等一系列数学、力学基础课程。
本课程教学应紧密结合相关的实验力学教学共同完成。
通过本课程的学习,为学生完成相关毕业设计课题奠定必备的基础。
四、教学内容、重点、教学进度、学时分配第一章绪论(2学时)1、主要内容机械振动的概念、振动理论研究体系、振动系统分类、简谐振动以及振动发展历史概述(选)2、本章重点机械振动的概念,振动理论研究体系,简谐振动3、本章难点振动系统分类4、教学要求从工程实践方面介绍广泛存在的振动现象,概括其特点和共同性,由此给出机械振动的科学概念。
指出振动理论的研究体系,分类的方法及振动力学的发展历史与现状,特别是指出振动力学在工程中的应用前景和应用价值;介绍相关参考书,提示学生在今后的学习中,从全书观点逐步理解分类的系统性。
第二章单自由度系统的自由振动(10学时)1、主要内容单自由度系统的无阻尼自由振动、等效质量与等效刚度、等效黏性阻尼和有阻尼自由振动。
2、本章重点建立振动微分方程、固有频率和振型、阻尼比、幅频和相频曲线与共振。
3、本章难点建立微分方程、固有频率、振幅减缩率和阻尼比。
4、教学要求介绍单自由度振动系统的工程实际背景,给出描述这一自然现象的力学模型,通过牛顿法和拉氏法建立数学模型及其简化理由和适用条件。
给出固有频率、阻尼特性及它们在自由振动中的物理意义,着重讲解幅频特性、相频特性曲线的物理意义及其在工程设计、控制中的重要作用。