恒定磁场
- 格式:pdf
- 大小:431.15 KB
- 文档页数:29
三、恒定磁场电流或运动电荷在空间产生磁场。
不随时间变化的磁场称恒定磁场。
它是恒定电流周围空间中存在的一种特殊形态的物质。
磁场的基本特征是对置于其中的电流有力的作用。
永久磁铁的磁场也是恒定磁场。
1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。
电流元受到的安培力 B l d I f d⨯''=毕奥——萨伐尔定律 ⎰⨯=l r r l Id B 2004 πμ对于粗导线,可将导线划分为许多体积元dV 。
⎰⎰⎰⨯=Vrr dV J B 24 πμ 2、磁通连续性定理磁场可以用磁力线描述。
若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。
磁场中的高斯定理 0d =⋅⎰⎰SS B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。
应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅VSdV B S B d0=⎰⎰⎰⋅∇VdV B由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。
这是磁场的基本性质之一,称为无散性。
磁场是无源场。
3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。
总的磁场由自由电流与分子电流共同产生。
永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。
磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。
磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。
n IS P m =磁场强度 M B H-=0μ 或 )(0M H B +=μ本构方程 由m H M χ=可得 H B μ=,该式称为磁媒质的成分方程或本构方程。
磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质1>>r μ。
4、安培环路定律磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。
回路的方向与电流的正向按右螺旋规则选定。
恒定磁场边界条件公式恒定磁场是指在时间上不发生变化的磁场。
磁场边界条件是指在不同材料的边界上,磁场强度和磁感应强度需要满足一定的关系。
根据麦克斯韦方程组和电磁感应原理,可以得到恒定磁场的边界条件公式。
在这篇文章中,我将详细介绍恒定磁场边界条件公式。
恒定磁场的边界条件公式主要包括两个方面:磁场强度的切向分量和法向分量在两边界上的关系。
首先,考虑磁场强度的切向分量在两个边界上的关系。
设在两个材料之间有一个边界,其中材料1的磁场强度为H1,角标1代表材料1;材料2的磁场强度为H2,角标2代表材料2根据电磁感应原理,磁场强度的切向分量在两个边界上需要满足以下条件:1. 磁场强度的切向分量在边界上连续。
即H1t = H2t,其中H1t和H2t分别代表磁场强度的切向分量,t代表tangential(切向)。
2. 在无自由电荷和电流的区域,磁场强度的切向分量在任意闭合回路上的线积分为零。
即∮Ht·dl = 0,其中∮代表线积分,Ht代表磁场强度的切向分量,dl代表回路上的微小位移元素。
其次,考虑磁感应强度的法向分量在两个边界上的关系。
设在两个材料之间有一个边界,其中材料1的磁感应强度为B1,角标1代表材料1;材料2的磁感应强度为B2,角标2代表材料2根据麦克斯韦方程组和电磁感应原理,磁感应强度的法向分量在两个边界上需要满足以下条件:1. 磁感应强度的法向分量在边界上连续。
即B1n = B2n,其中B1n和B2n分别代表磁感应强度的法向分量,n代表normal(法向)。
2.在无自由电荷和电流的区域,磁感应强度的法向分量在任意闭合回路上的线积分为零。
即∮Bn·dA=0,其中∮代表面积分,Bn代表磁感应强度的法向分量,dA代表回路投影在平面上的微小面积元素。
综上所述,恒定磁场的边界条件公式可以总结为以下四个方程:1.H1t=H2t2. ∮Ht·dl = 03.B1n=B2n4.∮Bn·dA=0这四个公式是根据电磁感应原理和麦克斯韦方程组推导出来的,可以用来描述恒定磁场在边界上的行为,并应用于不同材料的接触面。
恒定磁场高斯定理公式
恒定磁场高斯定理:
1. 定义:恒定磁场高斯定理是物理学中一种物理学定理,其主要涉及
到磁场如何影响物体,及磁场是如何分布的。
2. 原理:恒定磁场高斯定理称为「磁产生定律」,这个定律表明:磁
场的强度、施加力的大小和物体的深度之间的关系是简单的高斯模型,即在空间上,磁场的强度衰减率满足高斯型模型,而不是简单的正弦
型模型。
3. 应用:恒定磁场高斯定理常用来描述磁场的强度分布,如果一个磁
场内没有任何外部质量或电流的影响,那么磁场的强度衰减率将满足
高斯型模型。
这一定律经常用于测量磁场的强度,以了解地磁场的强
度分布和磁场方位,以及估计电磁散射层的厚度。
4. 公式:恒定磁场高斯定理的数学公式表述为,若将物体的中心视为
原点,则磁场的强度B随着距离r的变化满足:
$$B(r)=\frac{B_0}{1+\left(\frac{2c}{r}\right)^2}$$
其中,B_0为物体中间磁力线的平均强度,而c是磁场到物体中心的距离。
5. 参考:E.W Jorry曾表明恒定磁场高斯定理,这个定律经常被用于研究地磁场和大气层。
6. 总结:测量磁场强度及分布与恒定磁场高斯定理有关,它给出了磁场强度衰减率满足高斯型模型的物理定律,广泛的应用于地磁方位、磁场强度分布和电磁散射层厚度估计等等方面。