系统聚类的方法.ppt
- 格式:ppt
- 大小:1.58 MB
- 文档页数:32
第一节系统聚类分析第五章聚类分析(一)教学目的通过本章的学习,对聚类分析从总体上有一个清晰地认识,理解聚类分析的基本思想和基本原理,掌握用聚类分析解决实际问题的能力。
(二)基本要求了解聚类分析的定义,种类及其应用范围,理解聚类分析的基本思想,掌握各类分析方法的主要步骤。
(三)教学要点1、聚类分析概述;2、系统聚类分析基本思想,主要步骤;3、动态聚类法基本思想,基本原理,主要步骤;4、模糊聚类分析基本思想,基本原理,主要步骤;5、图论聚类分析基本思想,基本原理。
(四)教学时数6课时五)教学内容 (1、聚类分析概述2、系统聚类分析3、动态聚类法4、模糊聚类分析5、图论聚类分析统计分组或分类可以深化人们的认识。
实际应用中,有些情况下进行统计分组比较容易,分组标志确定了,分组也就得到了,但是,有些情况下进行统计分组却比较困难,特别是当客观事物性质变化没有明显标志时,用于确定分组的标志和组别就很难确定。
聚类分析实际上给我们提供了一种对于复杂问题如何分组的统计方法。
第一节聚类分析概述一、聚类分析的定义聚类分析是将样品或变量按照它们在性质上的亲疏程度进行分类的多元统计分析方法。
聚类分析时,用来描述样品或变量的亲疏程度通常有两个途径,一是把每个样品或变量看成是多维空间上的一个点,在多维坐标中,定义点与点,类和类之间的距离,用点与点间距离来描述样品或变量之间的亲疏程度;另一个是计算样品或变量的相似系数,用相似系数来描述样品或变量之间的亲疏程度。
二、聚类分析的种类(一)聚类分析按照分组理论依据的不同,可分为系统聚类法,动态聚类法,模糊聚类、图论聚类、聚类预报等多种聚类方法。
1、系统聚类分析法。
是在样品距离的基础上定义类与类的距离,首先将个样品自成n一类,然后每次将具有最小距离的两个类合并,合并后再重新计算类与类之间的距离,再并类,这个过程一直持续到所有的样品都归为一类为止。
这种聚类方法称为系统聚类法。
根据并类过程所做的样品并类过程图称为聚类谱系图。
系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。
基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。
常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。
1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。
它们所对应的要素数据可用表3.4.1给出。
(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。
①总和标准化②标准差标准化③极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。
④极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。
2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。
①绝对值距离选择不同的距离,聚类结果会有所差异。
在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。
例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。
对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。
▲ 基本步骤:①把各个分类对象单独视为一类;②根据距离最小的原则,依次选出一对分类对象,并成新类;③如果其中一个分类对象已归于一类,则把另一个也归入该类;如果一对分类对象正好属于已归的两类,则把这两类并为一类;每一次归并,都划去该对象所在的列与列序相同的行;④那么,经过m-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。
★直接聚类法虽然简便,但在归并过程中是划去行和列的,因而难免有信息损失。
因此,直接聚类法并不是最好的系统聚类方法。
[举例说明](点击打开新窗口,显示该内容)例:已知九个农业区之间的绝对值距离矩阵,使用直接聚类法做聚类分析。
系统聚类法是一种聚类分析方法,它通过迭代不断调整类簇中心来将数据点聚类到相应的类簇中。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
这些算法的共同点是都通过迭代来改进聚类结果。
系统聚类法是一种基于计算机的数据分析方法,它可以将相似的数据点聚类到同一类簇中,从而发现数据的结构和模式。
系统聚类法通常用于无监督学习,即对于没有标记的数据进行聚类。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
基于划分的聚类方法,如K-Means,是一种迭代算法。
它首先随机选取K个数据点作为类簇中心,然后将其他的数据点分配到最近的类簇中。
接着,它会根据分配的数据点重新计算类簇中心,并再次重新分配数据点。
这个过程会不断重复直到满足某种停止条件。
基于层次的聚类方法,如层次聚类,是一种
分治算法。
它首先将所有数据点看作是单独的类簇,然后不断地将最相似的两个类簇合并。
每次合并都会形成一层新的类簇层次结构,直到所有数据点被合并为一个类簇。
系统聚类法还可以根据不同的度量标准来计算类簇相似度,常用的度量标准有欧几里得距离、曼哈顿距离、余弦相似度等。
系统聚类法在很多领域都有广泛的应用,如市场细分、文本分类、图像识别、生物信息学等。
不过,系统聚类法也有一些缺陷,如对异常值敏感、对初始聚类中心的选择敏感、对类簇数量的限制等。
因此,在使用系统聚类法时需要谨慎选择算法和参数,并结合其他方法进行验证。
聚类分析之系统聚类法系统聚类法是一种常用的聚类分析方法,旨在将样本集合划分为不同的簇,使得同一个簇内的样本之间相似度较高,而不同簇之间的样本相似度较低。
本文将介绍系统聚类法的基本原理、常用的聚类算法以及应用领域等内容。
系统聚类法的基本原理是通过计算样本之间的距离或相似度来判断它们之间的关系,并将相似的样本归为同一簇。
在系统聚类法中,最常用的距离度量方法有欧氏距离、曼哈顿距离和余弦相似度等。
通过选择适当的距离度量方法,可以更准确地描述样本之间的差异。
常见的系统聚类算法包括层次聚类法、BIRCH算法和DBSCAN算法等。
层次聚类法是一种自底向上的聚类算法,它从每个样本开始,逐步合并相邻的样本,直到所有样本都被合并为一个簇。
BIRCH算法是一种基于CF树的聚类算法,它通过构建一种多叉树的数据结构来实现高效的聚类计算。
DBSCAN算法则是一种基于密度的聚类算法,它通过确定样本的邻域密度来判断是否属于同一簇。
系统聚类法在许多领域中都有广泛的应用。
在生物信息学领域,系统聚类法可以用于基因表达数据的聚类分析,从而找到具有相似表达模式的基因。
在市场营销领域,系统聚类法可以用于将顾客划分为不同的群体,从而为不同群体制定个性化的营销策略。
在图像处理领域,系统聚类法可以用于图像分割,将具有相似颜色或纹理特征的像素归为同一簇。
尽管系统聚类法具有广泛的应用前景,但也存在一些挑战和限制。
首先,系统聚类法对初始样本集合的选择较为敏感,不同的初始选择可能导致不同的聚类结果。
其次,系统聚类法在处理大规模数据时计算复杂度较高,需要消耗大量的计算资源。
此外,系统聚类法还面临着噪声和异常值的影响,这些值可能会干扰正常的聚类结果。
总之,系统聚类法是一种重要的聚类分析方法,通过计算样本之间的距离或相似度,将相似的样本归为同一簇。
它在生物信息学、市场营销和图像处理等领域具有广泛的应用价值。
然而,系统聚类法仍面临一些挑战和限制,如初始样本选择、计算复杂度和噪声处理等问题。
系统聚类的方法解析系统聚类是一种数据分析技术,用于将一组对象划分为不同的类别或群组,使得同一类别内的对象具有相似的特征,而不同类别之间的对象具有明显的差异。
系统聚类方法基于对象之间的相似度或距离来判断它们是否属于同一类别。
本文将介绍几种常见的系统聚类方法,包括层次聚类、K-均值聚类和DBSCAN聚类。
层次聚类是一种将对象以树形结构进行组织的聚类方法。
它可以分为凝聚式聚类和分裂式聚类两种类型。
凝聚式聚类从每个对象作为一个类开始,逐步合并最相似的类,直到所有对象都合并为一个类为止。
分裂式聚类从所有对象作为一个类开始,将其分解为越来越小的类,直到每个类只包含一个对象为止。
层次聚类方法可以根据不同的相似度度量(如欧几里得距离、曼哈顿距离等)来计算对象之间的距离。
K-均值聚类是一种基于距离的聚类方法。
它将要聚类的对象划分为K 个类别,其中K是预先指定的。
它通过迭代优化的方式,计算每个对象与每个类别的距离,并将对象划分到距离最近的类别中。
在每次迭代后,重新计算每个类别的质心(即所有对象的平均值),并调整对象的归属,直到达到一定的停止准则(如达到最大迭代次数或类别的变化小于一些阈值)。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法。
它将对象的密度定义为一些半径内的对象数目。
DBSCAN通过定义两个参数:半径(ε)和最小对象数目(MinPts),来判断对象是否是核心对象、边界对象还是噪声对象。
从核心对象开始,递归地将密度可达的对象划分到同一类别中,直到没有更多的密度可达对象。
DBSCAN可以有效地发现任意形状和大小的聚类,且对噪声对象的影响较小。
系统聚类方法适用于无监督学习任务,因为它们不需要事先的标记数据。
它们可以通过计算对象之间的相似度或距离,自动发现潜在的模式和结构。
然而,系统聚类方法需要选择合适的聚类数目、参数和相似度度量,这对于不同的数据集可能是挑战性的。