应力、变形及裂纹讲解
- 格式:ppt
- 大小:4.58 MB
- 文档页数:42
产生焊接裂纹焊接应力和变形的原因产生焊接裂纹的原因主要是焊接应力和变形。
在焊接过程中,由于热量的作用和材料的收缩,会产生应力和变形。
这些应力和变形如果超过了材料的承载能力,就会导致焊接裂纹的产生。
焊接应力是指在焊接过程中,由于热量的输入和材料的收缩,使得焊接接头产生的内部应力。
这些应力会导致接头周围的材料受到拉伸或压缩,当拉伸或压缩的应力超过材料的强度限制时,就会产生裂纹。
焊接应力的大小取决于焊接过程中的热量输入、材料的热膨胀系数、焊接接头的形状和尺寸等因素。
焊接变形是指在焊接过程中,由于热量的输入和材料的收缩,使得焊接接头产生的形状和尺寸的变化。
焊接变形通常包括收缩变形和热变形两种形式。
收缩变形是指焊接接头在冷却过程中由于材料的收缩而发生的变形,主要表现为接头的收缩和变形。
热变形是指焊接接头在焊接过程中由于热量的输入而发生的变形,主要表现为接头的膨胀和变形。
焊接变形会导致接头的形状和尺寸与设计要求不符,从而影响接头的性能和使用寿命。
焊接裂纹的产生与焊接应力和变形密切相关。
当焊接应力和变形超过材料的承载能力时,就会导致焊接接头产生裂纹。
焊接裂纹的形成通常有以下几个原因:1. 焊接过程中的热应力:焊接过程中,由于热量的输入和材料的收缩,会产生热应力。
热应力会使接头周围的材料受到拉伸或压缩,当拉伸或压缩的应力超过材料的强度限制时,就会产生裂纹。
2. 焊接材料的选择不当:焊接材料的选择不当也是导致焊接裂纹的一个重要原因。
如果选择的焊接材料与基材的热膨胀系数差异较大,就会在焊接过程中产生较大的应力和变形,从而导致裂纹的产生。
3. 焊接接头的设计不合理:焊接接头的设计不合理也会导致焊接裂纹的产生。
如果接头的形状和尺寸设计不当,就会在焊接过程中产生较大的应力和变形,从而导致裂纹的产生。
因此,在设计接头时应考虑到焊接应力和变形的影响,合理选择接头的形状和尺寸。
为了减少焊接裂纹的产生,可以采取以下措施:1. 控制焊接参数:合理控制焊接参数,如焊接电流、焊接速度、预热温度等,可以减少焊接过程中的热应力和变形,从而降低焊接裂纹的产生风险。
铸件的变形、裂纹副教授:陈云铸件的变形、裂纹变形裂纹残余热应力的存在,使铸件处在一种非稳定状态,将自发地通过铸件的变形来缓解其应力,以回到稳定的平衡状态。
当铸造内应力超过金属的强度极限时,铸件便产生裂纹(热裂纹与冷裂纹)。
一、铸件的变形具有残余应力的铸件是不稳定的,它将自发地通过变形来减缓其内应力,以便趋于稳定状态。
只有原来受拉伸部分产生压缩变形、受压缩部分产生拉伸变形,才能使残余内应力减小或消除。
厚部、心部受拉应力,出现内凹变形;薄部、表面受压应力,出现外凸变形车床床身的导轨部分厚,侧壁部分薄,铸造后导轨产生拉应力,侧壁产生压应力,往往发生导轨面下凹变形。
将一刚生产出来的圆柱体铸件,作如下加工:1、将铸件外表面车掉一层;2、将铸件心部钻一通孔;3、将铸件侧面切去一部分;问:在这三种情况下铸件会发生什么变化?防止变形的方法与防止铸造应力的方法基本相同。
此外,工艺上还可采取某些措施,如反变形法;对某些重要的易变形铸件,可采取提早落砂,落砂后立即将铸件放入炉内焖火的办法消除机械应力。
二、铸件的裂纹当铸造应力超过金属的强度极限时,铸件便产生裂纹,裂纹是严重的铸造缺陷,必须设法防止。
按裂纹形成的温度范围可分为热裂纹和冷裂纹两种。
1、热裂纹热裂纹是在凝固末期高温下形成的裂纹。
其形状特征是缝隙宽、形状曲折、缝内呈氧化色。
铝合金6061圆铸锭 100X热裂纹在金相分析上的形状表现为锯齿状裂开,裂纹弯曲、分叉或呈网状、圆弧状,断口位置处裂纹凹凸不平。
热裂纹一般分布在应力集中部位(尖角或断面突变处)或热节处。
防止热裂纹的方法:使铸件结构合理,减小浇、冒口对铸件收缩的机械阻碍,内浇口设置应符合同时凝固原则。
此外减少合金中有害杂质硫、磷含量,可提高合金高温强度,特别是硫增加合金的热脆性,使热裂倾向大大提高。
2、冷裂纹冷裂纹是铸件处于弹性状态即在较低温下形成的裂纹。
其形状特征是裂纹细小、连续直线状,有时缝内呈轻微氧化色。
焊接应力与变形产生的原因及对策
焊接过程中,由于焊接热量的作用,会引起材料的膨胀和收缩,从而产生应力和变形。
这些应力和变形会影响焊接件的尺寸精度、强度和耐久性,甚至导致焊接件出现裂纹和变形失效。
造成焊接应力和变形的原因主要有以下几个方面:
1. 热应力:焊接过程中,由于焊接热量的作用,使得焊接区域的温度急剧升高,从而引起材料的扩张和收缩。
这种温度差异会产生热应力,导致焊接件发生变形和应力。
2. 冷却应力:焊接完成后,焊接件会迅速冷却,冷却速度过快会导致焊接件表面和内部温度梯度过大,产生冷却应力,进而引起应力和变形。
3. 材料不匹配:焊接材料的热膨胀系数、熔点、硬度等物理性质不同,容易导致焊接区域产生应力和变形。
4. 焊接结构设计不合理:焊接结构设计不合理,如焊接位置不当、焊接接头不够强壮等,容易导致应力集中和变形。
针对焊接应力和变形的问题,可以采取以下对策:
1. 控制焊接热量:采用合适的焊接参数,控制焊接热源的大小和位置,以减少焊接区域的温度梯度,从而降低应力和变形。
2. 加强冷却措施:在焊接完成后,采取适当的冷却措施,如缓慢冷却、局部加热等,以减少焊接件的冷却速度,从而降低冷却应力。
3. 选择合适的焊接材料:选择合适的焊接材料,如选择热膨胀
系数和熔点相似的材料,可以减少焊接区域的应力和变形。
4. 优化焊接结构设计:优化焊接结构设计,加强焊接部位的加强设计,采用适当的焊接方式和焊接技术,可以减少应力集中和变形。
总之,采取合适的对策,可以有效地控制焊接应力和变形,提高焊接件的质量和性能。
热处理变形与裂纹工件热处理后常产生变形和开裂,其结果不是报废,也要花大量工时进行修整。
工件变形和开裂是由于在冷、热加工中产生的应力所引起的。
当应力超过弹性极限时,工件产生变形;应力大于强度极限时,工件产生裂纹。
热处理中热应力和组织应力是怎样产生的?只有不断认识这个问题,才能采用各种工艺方法来减小和近控制这两种应力。
在加热和冷却时,由于工件热胀冷缩而产生的热应力和组织转变产生的组织应力是造成变形和开裂的主要原因,而原材料缺陷、工件结构形状等因素也促使裂纹的产生和发展。
后面主要叙述热处理操作中的变形和开裂产生原因及一般防止方法,也讨论原材料质量、结构形状等对变形和开裂的影响。
一、钢的缺陷类型1、缩孔:钢锭和铸件在最后凝固过程中,由于体积的收缩,得不到钢液填充,心部形成管状、喇叭状或分散的孔洞,称为缩孔。
缩孔将显著降低钢的机械性能。
2、气泡:钢锭在凝固过程中会析出大量的气体,有一部分残留在处于塑性状态的金属中,形成了气孔,称为气泡。
这种内壁光滑的孔洞,在轧制过程中沿轧制方向延伸,在钢材横截面的酸浸试样上则是圆形的,也叫针孔和小孔眼。
气泡将影响钢的机械性能,减小金属的截面,在热处理中有扩大纹的倾向。
3、疏松:钢锭和铸件在凝固过程中,因部分的液体最后凝固和放出气体,形成许多细小孔隙而造成钢的一种不致密现象,称为疏松。
疏松将降低钢的机械性能,影响机械加工的光洁度。
4、偏析:钢中由于某些因素的影响,而形成的化学成份不均匀现象,称为偏析。
如碳化物偏析是钢在凝固过程中,合金元素分别与碳元素结合,形成了碳化物。
碳化物(共晶碳化物)是一种非常坚硬的脆性物质,它的颗粒大小和形状不同,以网状、带状或堆集不均匀地分布于钢的基体中。
根据碳化物颗粒大小、分布情况、几何形状、数量多少将它分为八级。
一级的颗粒最小,分布最均匀且无方向性。
二级其次,八级最差。
碳化物偏析严重将显著降低钢的机械性能。
这种又常常出现于铸造状态的合金具钢和高速钢中。
第二章铸件的应力前一章内容总结前一章主要讲解“铸件宏观凝固组织及控制”,通过一系列的工艺措施,可以尽可能多地得到细小的等轴晶粒组织,这样可以保证得到强度和韧性都非常良好的铸件。
得到了理想的细晶组织,是否铸件的成型就完成了?完美金相就拿这个暖气片来说,天气太冷,老板通过市场调查,让你开发暖气片,还答应你,干好了先让你用。
你高兴,美梦。
你在生产过程中,采取了各种措施,得到了一个具有理想组织的铸件,但是当你将铸件往一块装配的时候,这两个口应该对起来,但是如果铸件产生变形,一个距离长,一个距离短,两个照不起来,铸件报废。
另外一个问题,你看着铸件的外表没有什么问题,你把这个铸件装配起来,结果一通压力,漏水了。
美梦变恶梦什么原因造成的?这些都是在后面要讲的。
首先:介绍铸件中的应力2.1 概述2.1.1 金属(合金)→冷却降温→凝固(收缩膨胀)→继续降温→固态相变(体积收缩或膨胀)→体积变化→体积变化受阻→铸件内产生应力→内应力2.1.2铸造应力的分类:应力铸造应力:铸件在铸造过程中在内部所产生的应力。
临时应力:铸造过程中,产生应力的原因消除后应力消失:残余应力::铸造过程中,产生应力的原因消除后应力依然存在,这种应力称为:(铸造)残余应力。
以上两种应力是从时间上分类的。
按应力产生的原因有以下三种:热应力、相变应力、机械阻碍应力、关于这几种应力,我们在后面将逐一给以详细的介绍。
2.1.3应力对铸件的影响低于弹性极限:铸件中产生应力,同时在应力的作用下,产生有限的变形(弹性变形)高于屈服极限:铸件产生塑性变形;高于强度极限:铸件中出现裂纹。
因此,在这一章中,将应力、变形、裂纹放在一起讲解。
在应力的作用下,铸件如何变形和出现裂纹,也将在后面相应的章节中介绍。
2.2热应力:2.2.1概念热应力:铸件冷却过程中,由于各部分冷却速度不同,收缩时间及收缩量不同,铸件由于结构所限,相互制约,不能完成各自的理论变形,结果:在铸件内所产生的应力。
塑胶应力开裂裂纹特征以塑胶应力开裂裂纹特征为标题,我们来探讨一下塑胶材料在应力作用下产生裂纹的特征。
一、塑胶材料的应力开裂裂纹特征在塑胶材料中,应力的作用会导致材料发生变形,甚至产生裂纹。
塑胶材料的应力开裂裂纹特征主要表现在以下几个方面:1. 裂纹形态:塑胶材料的应力开裂裂纹通常呈现线状或分支状。
线状裂纹一般沿着材料的主应力方向延伸,而分支状裂纹则是从线状裂纹分叉出来,形成多条裂纹。
2. 裂纹密度:塑胶材料的应力开裂裂纹密度较高,裂纹之间的间距较小。
这是因为塑胶材料的分子排列较为紧密,应力作用下容易形成多个裂纹。
3. 裂纹方向:塑胶材料的应力开裂裂纹方向与应力方向有关。
通常情况下,裂纹与主应力方向呈一定的夹角,夹角的大小取决于材料的性质和应力的大小。
4. 裂纹扩展:塑胶材料的应力开裂裂纹会随着应力的增大而扩展。
裂纹扩展的速度取决于材料的韧性和应力的大小。
一般情况下,材料的韧性越高,裂纹扩展速度越慢。
二、塑胶材料应力开裂裂纹的形成机制塑胶材料的应力开裂裂纹形成是由于材料内部存在的缺陷或者应力集中导致的。
具体来说,塑胶材料应力开裂裂纹的形成机制主要有以下几种:1. 缺陷导致裂纹:塑胶材料中存在的缺陷,如气泡、颗粒、纤维等,容易成为裂纹的起始点。
当应力作用到达一定程度时,裂纹就会从缺陷处开始形成。
2. 应力集中导致裂纹:在塑胶材料中,由于形状的不均匀或者外部载荷的作用,会导致应力集中的区域产生。
这些应力集中的区域容易形成裂纹,从而导致应力开裂裂纹的形成。
3. 疲劳导致裂纹:在塑胶材料长时间的应力加载下,由于材料的疲劳强度有限,会导致裂纹的形成。
这种裂纹通常呈现为疲劳裂纹,会随着应力的加载不断扩展。
三、塑胶材料应力开裂裂纹的预防措施为了防止塑胶材料发生应力开裂裂纹,我们可以采取一些预防措施,包括:1. 选择合适的材料:在使用塑胶材料时,应根据具体的应用环境和要求选择合适的材料。
不同的材料具有不同的强度和韧性特性,选择合适的材料可以减少应力开裂裂纹的发生。
合金的凝固收缩是铸件产生应力变形和冷裂的基本原因
合金的凝固收缩是指在合金凝固成固态时,由于液态合金变为固态时体积减小所引起的收缩现象。
这种凝固收缩是铸件产生应力变形和冷裂的基本原因之一。
当液态合金凝固时,会发生凝固收缩,使得固态合金的体积减小。
然而,铸件在凝固过程中由于约束条件的存在无法自由收缩,会受到限制而产生内部应力。
这些内部应力会导致铸件产生塑性变形或裂缝。
具体来说,下面是几个主要的原因:
1. 温度梯度:凝固过程中,合金的外层先凝固,内层温度较高,并且包围层的凝固固体会限制内部的收缩,导致铸件表面和内部产生温度梯度。
这种温度梯度引起了热应力,可能导致铸件产生塑性变形或裂纹。
2. 延展性差异:不同金属和合金的热膨胀系数不同,凝固收缩率也不同,这会导致不同部分的收缩速率不一致。
收缩速率不一致会引起内部的应力累积,易导致铸件产生塑性变形或裂纹。
3. 固态转变引起的收缩:在铸件凝固过程中,有些合金的固态相相比液态相体积更小,因此在固态转变期间会发生额外的收缩。
这种收缩会导致铸件产生更大的应力,容易引发应力集中区域的裂纹。
为了降低凝固收缩引起的应力变形和冷裂的风险,可以通过调整合金成分、改变凝固工艺、优化铸件设计等方法来进行控制。
第五节焊接结构中的应力与变形在焊接生产中,焊接应力与变形的产生是不可避免的。
焊接过程结束,焊件冷却后残余在焊件的内应力即焊接残余应力往往是造成裂纹的直接原因,同时也降低了结构的承载能力和使用寿命。
焊接后产生的变形即焊接残余变形造成了焊件尺寸、形状的变化,这给正常的焊接生产带来一定困难。
因此,在焊接生产中的一项重要任务就是控制焊接残余应力和焊接残余变形。
一、焊接残余应力1.焊接残余应力的产生及其对焊接结构的影响焊接时,不均匀地加热与冷却是产生焊接残余应力的主要原因。
以低碳钢(20钢)为例,在加热时,随着温度的升高,特别是在300℃以上的温度时其强度迅速降低。
当温度达到600℃左右时,屈服便接近于零(图6-5)。
焊接过程中由于加热的不均匀,在高温时,金属的屈服为零的情况下,处于自由变形状态。
当焊接热源移开后,金属恢复强度时其收缩变形受到周围金属的限制,同时组织转变过程中又发生体积的变化,从而产生了焊接残余应力。
一般来说,在焊接条件下主要存在下面几种应力。
图6-5低碳钢屈服与温度的关系---实测曲线一简化曲线(1)温度应力温度应力又称热应力,它是由于金属受热不均匀,各处变形不一致且互相约束而产生的应力。
焊接过程中温度应力是不断变化的,且峰值一般都达到屈服点,因此必然发生塑性变形。
焊接结束冷却后,也必然有残余应力保留下来。
(2)组织应力焊接过程中,金属组织进行相变时将产生体积变化,主要是由于各种组织具有不同的热物理性能(表6-5)。
当焊缝金属从高温冷却,奥氏体分解时产生的铁素体、珠光体、马氏体等都会产生体积膨胀,转变后的这些组织都具有较小的膨胀系数。
奥氏体分解产生的体积膨胀并不是在自由状态下进行的,而是受到周围金属的约束。
同时,由于焊接的不均匀加热与冷却,因此组织的转变也是不均匀的,结果产生了应力。
对于低碳钢和一些低合金高强钢焊后冷却时,奥氏体分解为珠光体和贝氏体的温度较高的低碳钢的相变点为723℃),此时金属呈好的塑性,奥氏体转变时发生的体积变化阻力很小,因此不会造成很大的应力。
应力开裂裂纹特征应力开裂是指在物体受到外部力作用下产生的裂纹。
应力开裂裂纹特征是研究材料力学性能和工程结构可靠性的重要内容之一。
本文将从裂纹的形态特征、裂纹的扩展规律以及应力开裂的影响因素三个方面进行详细介绍。
一、裂纹的形态特征裂纹的形态特征主要包括裂纹的形状、大小和分布等。
根据裂纹形状的不同,可以将裂纹分为直线裂纹、弯曲裂纹和分叉裂纹等。
直线裂纹是最常见的一种裂纹形态,其形状呈直线状,通常是由于应力集中引起的。
弯曲裂纹是指裂纹呈曲线状,通常是由于材料的塑性变形引起的。
分叉裂纹是指裂纹出现分支的情况,通常是由于应力场的不均匀引起的。
裂纹的大小是指裂纹的长度和深度。
裂纹的长度一般用裂纹长度比表示,即裂纹长度除以裂纹的深度。
裂纹的深度是指裂纹从材料表面到达的最深处的距离。
裂纹的分布是指裂纹在材料中的位置分布情况。
裂纹可以集中分布在局部区域,也可以分散分布在整个材料中。
二、裂纹的扩展规律裂纹的扩展规律是指裂纹在受力过程中的扩展方式和速度。
裂纹的扩展可以分为稳定扩展和不稳定扩展两种情况。
稳定扩展是指裂纹在受到外界应力作用下以一定速度扩展,扩展速度与应力强度有关。
不稳定扩展是指裂纹在受到外界应力作用下突然加速扩展,扩展速度很快,可能导致材料的破坏。
裂纹的扩展速度与裂纹尖端处的应力强度因子有关。
应力强度因子是描述裂纹尖端应力状态的物理量,可以用来判断裂纹的扩展方向和速度。
当应力强度因子超过一定临界值时,裂纹就会继续扩展,直到材料的破坏。
三、应力开裂的影响因素应力开裂的影响因素很多,主要包括应力水平、材料的力学性能和裂纹的形态特征等。
应力水平是指材料所受到的外界应力大小。
当应力超过材料的抗拉强度时,就容易发生应力开裂。
材料的力学性能包括弹性模量、屈服强度、断裂韧性等。
材料的力学性能越好,抵抗应力开裂的能力越强。
裂纹的形态特征对应力开裂也有很大的影响。
裂纹越长、越深,裂纹尖端的应力强度因子就越大,裂纹的扩展速度也就越快。
详解应力腐蚀机械设备零件在应力(拉应力)和腐蚀介质的联合作用下,将出现低于材料强度极限的脆性开裂现象,导致设备和零件失效,这种现象称为应力腐蚀开裂(简称SCC)。
根据介质的主要成分为氯化物、氢氧化物、硝酸盐及含氧水等,而分别称为氯裂(氯脆或氯化物开裂)、碱裂(碱脆)、硝裂(硝脆)及氧裂(氧脆)等。
应力腐蚀开裂与单纯由机械应力造成的开裂不同,它在极低的负荷应力下也能产生开裂;它与单纯由腐蚀引起的开裂也不同,腐蚀性极弱的介质也能引起应力腐蚀开裂。
其全面腐蚀常常很轻,而且没有变形预兆,即发生突然断裂,应力腐蚀是工业生产中危害性最大的一种恶性腐蚀类型。
由应力腐蚀而引起的裂纹是在没有任何明显宏观变形更无任何征兆的情况下发生的,所以其破坏具有突发性。
裂纹往往又深入到金属内部,一旦发生也很难修复,有时只能整台设备报废。
碳钢及低合金钢在湿度较大的硫化氢环境中易发生硫化物应力腐蚀,对石油、石化工业装备的安全运行构成很大的威胁。
对低浓度硫化氢环境,可通过净化材质、大幅度降低S、P含量,改善材料组织结构等措施,对应力腐蚀起到有效抑制作用。
一、形成应力腐蚀裂纹的基本条件如下:(1) 金属材料是合金也包括微量元素的合金,纯金属一般不发生应力腐蚀裂纹;(2) 材质与腐蚀介质的匹配并非任何金属材料与任何介质都能产生应力腐蚀裂纹,它们有一定的匹配关系;(3) 必须存在拉应力,拉应力可以是工作应力和焊接残余应力。
焊接残余应力通常在焊缝及近缝区为拉应力,有时高达材料的屈服点。
所以即使焊接结构不承受载荷,只要材质与腐蚀介质符合匹配关系也会引起应力腐蚀裂纹。
二、应力腐蚀的发生条件和特征:(1) 必须是拉应力;(2) 构成一定材料发生应力腐蚀的环境介质是特定的;(3) 应力腐蚀破裂速度远大于其他局部腐蚀速度,但比纯力学(机械)断裂速度小得多;(4) 应力腐蚀断裂,常在无明显预兆的情况下突然发生,故其危害性极大;(5) 裂纹形态有晶间型、穿晶型和混合型3种;(6) 断口形貌,宏观上属于脆性断裂,其微观上可观察到断面上仍有塑性流变痕迹。