铝合金讲义压铸模
- 格式:ppt
- 大小:1.48 MB
- 文档页数:18
压铸工艺培训讲义一.概述二.压铸过程中的主要参数三.压铸工艺四.铝合金五.压铸机应具有的操作程序六.压铸件的缺陷及分析2007.7一. 概述压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法。
它是将熔融金属在高压高速下充填铸型,并在高压下结晶凝固形成铸件的过程。
高压高速是压力铸造的主要特征。
常用的压力为数十兆帕,填充速度(内浇口速度)约为16~80米/秒,金属液填充模具型腔的时间极短,约为0.01~0.2秒。
由于用这种方法生产产品具有生产效率高,工序简单,铸件公差等级较高,表面粗糙度好,机械强度大,可以省去大量的机械加工工序和设备,节约原材料等优点,所以现已成为我国铸造业中的一个重要组成部分。
二. 压铸过程中的主要参数在压力铸造的整个过程中,压力起到了主导作用。
熔融金属不仅在压力作用下充满压室进入浇注系统,而填充又在压力作用下凝固成型。
在压射过程中各个阶段,随着冲头位置的移动,压力也出现不同的变化,这个变化规律都会对铸件质量产生重大影响。
因此我们应对压铸过程中压力的作用与变化要有一个感性认识,这也是压铸技术的理论基础。
现以常用的卧式冷室压铸机为例,来逐步描绘出压射过程中,随着冲头位置的移动和压力之间的变化规律。
首先要说明的是在以下各阶段图形中,左图表示压射的过程,右上图表示每一个位移阶段相应的压力变化值,右下图为相应的压射冲头位移曲线。
现将图中各阶段的具体内容说明如下:图(a),起始阶段,金属液开始浇入压室,准备压射。
图(b),第Ⅰ阶段,压射冲头慢速移动越过浇料口,金属液受到冲头的推动,由于速度较慢,压室中不产生浪涌,故金属液不致从浇口中溅出,这种状况也是在起始压射阶段所要求的。
这时推动金属液的压力为P0。
其作用有二,即克服压射油缸中活塞在移动时的摩擦力和冲头与压室之间的摩擦力。
冲头越过浇料口的这段距离为S1,称为慢速封口阶段。
图(c),第Ⅱ阶段,压射冲头以高于第Ⅰ阶段的速度向前运动,此时金属液充满整个压室前端,聚集到内浇口前沿之处,与这一阶段速度响应的压力上升值达到P1,冲头在这一阶段所运动的距离为S2,称为金属液堆积阶段。
压铸铝合金模具材料介绍压铸铝合金模具是一种用于生产铝合金零件的重要工具。
在压铸过程中,熔融的铝合金经过高压注入到模具中,形成所需的零件。
模具材料的选择对于压铸工艺的成功和生产效率至关重要。
本文将探讨几种常用的压铸铝合金模具材料,包括铝合金模具钢、热应力较小的冷作模具钢、高耐磨的工具钢和耐高温的耐烧蚀合金。
铝合金模具钢铝合金模具钢是一种特殊钢材,具有良好的切削性能和热导率,能够有效地耐受高温和高压力环境。
它通常包括以下几种成分: - 高碳含量:高碳含量能提高模具钢的硬度和耐磨性,使其能够承受高压下的剪切和冲击力; - 高钼含量:高钼含量可提高模具钢的耐蚀性和耐磨性,延长模具的使用寿命; - 高硅含量:高硅含量可提高模具钢的热导率和耐氧化性能,使其能够有效散热并防止氧化。
铝合金模具钢通常经过热处理,如淬火和回火,以提高其硬度和韧性。
它具有较高的强度和硬度,适用于生产高质量的铝合金零件。
冷作模具钢冷作模具钢是一种具有良好冷热疲劳性能和高韧性的模具材料。
它的主要特点是热应力较小,能够在高温下保持稳定的尺寸和形状。
常用的冷作模具钢包括:CR12CR12是一种高碳钢,具有极高的硬度和耐磨性。
它适用于生产大型厚壁铝合金零件,能够承受高压力和剪切力。
CR12MOVCR12MOV是CR12钢的改进型材料,添加了少量的硅和钼元素。
它具有更好的耐腐蚀性和耐磨性,适用于生产高精度的铝合金零件。
9CrWMn是一种高碳高合金工具钢,具有优异的硬度和耐磨性。
它适用于生产复杂形状的铝合金零件,能够承受高温和高压下的应力和冲击。
4Cr5MoSiV14Cr5MoSiV1是一种热加工模具钢,具有较高的韧性和耐热性。
它适用于生产大型高温铝合金零件,能够承受高温和高压力下的变形和拉伸。
高耐磨工具钢高耐磨工具钢是一种能够在高压力和高摩擦环境下保持良好硬度和耐磨性的模具材料。
常用的高耐磨工具钢包括:SKD11SKD11是一种专用冷作模具钢,具有良好的切削性能和硬度。
铝合金压铸件的结构设计经验1。
考虑壁厚的问题,厚度的差距过大会对填充带来影响2。
考虑脱模问题,这点在压铸实际中非常重要,现实中往往回出现这样的问题,这比注塑脱模讨厌多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1到3度,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模也就1度,而内拔模要2~3度左右3。
设计时考虑到模具设计的问题,如果有多个位置的抽心位,尽量的放两边,最好不要放在下位抽心,这样时间长了下抽心会容易出问题4。
有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要时结构避开重要外观位置便于设置浇口溢流槽5。
在结构上尽量的避免出现导致模具结构复杂的结构出现,如,不得不使用多个抽心或螺旋抽心等6。
对于需进行表面加工的零件,注意,需要在零件设计时给适合的加工留量,不能太多,否则加工人员会骂你的,而且会把里面的气孔都暴露出来的,不能太少,否则粗精定位一加工,得,黑皮还没干掉,你就等再在模具上打火花了,那给多少呢,留量最好不要大于0。
8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。
7。
再有就是注意选料了,是用ADC12还是A380等,要看具体的要求了8。
铝合金没有弹性,要做扣位只有和塑料配合。
9。
一般不能做深孔!在开模具时只做点孔,然后在后加工!10。
如果是薄壁零件与不能太薄,而且一定要用加强肋,增加抗弯能力!由于铝铸件的温度要在800摄氏度左右!模具寿命一般比较短一般做如电机外壳的话只有80K左右就再见了!1.压铸件的设计与塑胶件的设计比较相似,塑胶件的一些设计常规也适用于压铸件。
2.对于铝合金,模具所受温度和压力比塑胶的大很多,对设计的正确性要求特严。
即使很好的模具材料,一旦有焊接,模具就几乎无寿命可言。
锌合金跟塑胶差不多,模具寿命较好。
3.不能有凹的尖角,避免模具崩角。
4.压铸件的精度虽然比较高,但比塑胶差,而且拔模力比塑胶大,通常结构不能太复杂,必要时应将复杂的零件分解成两件或多件。
铝合金压铸模具结构
铝合金压铸模具结构:
1、模具结构:铝合金压铸模具由芯模、型腔等构成,其采用先进的模块组装技术,将模块连接在一起,实现流体、能量转化等功能。
2、模具理化加工:为了保证模具的准确和稳定,对铝合金压铸模具一般进行理化
加工,使其表面平滑、光洁、较大形状稳定性高。
3、模具表面处理:铝合金压铸模具表面要求质量良好,若需要刻字及特殊符号时,一般采用电镀、硬质氧化等方法进行处理,更好地满足模具使用要求。
4、模具尺寸公差:铝合金压铸模具的尺寸公差一般按照GB/T2086的要求进行控制,并且严格检查模具的尺寸大小,以确保其良好的商品率和产品质量。
5、模具强度要求:为了满足模具工作时的安全、稳定及使用寿命长等要求,一般
要求铝合金压铸模具的强度达到国家规定的标准,并进行拉伸及抗压等试验,以确保模具的高强度及质量。
6、模具温度管理:考虑到压铸模具工作过程中的温度不同,一般会在模具内部加
装温度调节装置,这可以有效地控制模具的工作温度,防止模具产生过高的温度变形。
7、硬度要求:铝合金压铸模具的硬度要求也是非常重要的,要求模具比较硬,以
保证其使用寿命、强度及耐磨性等方面的要求,一般要求其硬度满足GB5911、10
级HRC,而且不容易受损。
总之,铝合金压铸模具结构应当具有良好的理化性能、准确的尺寸、高度的强度、硬度保持稳定及精致的表面处理,以满足客户的需求并提高压铸的效率及质量。
压铸模流分析讲义一、引言压铸是一种常用的金属成形工艺,广泛应用于汽车、摩托车、航空航天等领域。
而在压铸过程中,模具的设计和模流分析是非常重要的环节,能够对压铸件的质量和成形效果起到关键的影响。
本讲义将介绍压铸模流分析的基本原理、流程和应用。
二、压铸模流分析的原理1.流动性分析原理:通过数值模拟方法,计算金属液在模穴中的流动速度、填充压力和温度分布等,并结合模具结构特点预测模具充填过程中的缺陷,如气孔、冷隔、夹杂等。
2.凝固性分析原理:根据金属液的凝固特性,分析模具结构对液态金属凝固过程的影响,预测可能出现的缺陷,如热裂纹、收缩缺陷等。
3.温度场分析原理:通过计算得到金属液在模具中的温度分布,进一步预测可能出现的缺陷。
4.应力变形分析原理:根据模具在铸造过程中的受力情况,分析金属液对模具的应力和变形,预测可能出现的变形和裂纹。
三、压铸模流分析的流程1.模型导入:将要分析的压铸模的三维CAD模型导入流体动力学(CFD)软件中。
2.网格划分:对导入的CAD模型进行网格划分,将模型划分为若干个网格单元,用于模拟流体的流动。
3.材料参数设置:设置金属液的物性参数,如密度、黏度、比热等,并将其导入CFD软件。
4.界面边界条件设置:设置金属液与模具壁之间的界面条件,如润滑和传热系数等。
5.操作条件设置:设置压铸过程中的操作参数,如压力、速度、温度等。
6.数值模拟:基于数值方法,对模具进行流动性、凝固性、温度场、应力变形等方面的模拟。
7.结果分析:根据模拟结果,对流动性、凝固性、温度场、应力变形等方面进行分析和评估。
8.优化设计:根据分析结果,对模具的结构和工艺参数进行优化设计,以改善铸件质量。
9.结果验证:通过样品试铸,验证优化后的模具设计和工艺参数是否能够达到预期效果。
四、压铸模流分析的应用1.优化模具结构设计:通过分析流动性、凝固性和应力变形等方面,可以找出模具设计中存在的问题,并提出相应的改进方案,以提高铸件的质量和生产效率。
铝合金压铸模具材料分析铝合金的压铸模所用材料大致有3Cr2W8V、4Cr5MoSiV1钢等,也有应用马氏体时效钢18Ni250的;此外,3Cr3M03W2V、3Cr3Mo3VNb钢等应用于制造铝合金压铸模也可获得良好的效果。
铝合金压铸模钢的淬火加热应在脱氧良好的盐浴或有保护气氛的炉中进行,或者装箱加热,有条件的工厂可在真空炉中加热淬火。
模具淬火后应立即回火以免开裂,回火温度应根据工作硬度来确定。
具有模具多年经验的刘氏模具通常推荐3Cr2W8V。
钢制铝合金压铸模型腔的硬度为42~48HRC,4Cr5MoSiV和4Cr5MoSiV1钢制模具型腔的硬度为44~50HRC。
淬火回火后为了防止粘模,可采用表层涂覆保护膜或进行氮碳共渗。
保护膜的形成是在型腔表面涂上矿物油或石墨润滑剂后,在500~550℃炉中加热30~60min。
在此期间对铝合金压铸模用钢的主要性能要求有:1) 高的回火抗力和冷热疲劳抗力。
大量连续生产的铝合金压铸模具,长时间处于一定温度作用下,应持续保持其高硬度,而且应不粘模及不产生氧化皮。
因此,模具应具有良好的抗氧化性与回火稳定性。
铝合金压铸模具表面反复受到高温加热与冷却,不断膨胀、收缩,产生交变热应力。
此应力超过模具材料的弹性极限时,就发生反复的塑性变形,引起热疲劳。
同时,模具表面长时间受到熔融金属的腐蚀与氧化,也会逐渐产生微细裂纹,大多数情况下,热疲劳是决定压铸模具寿命的最重要因素。
2) 足够的强度、硬度、塑性及耐热性能。
铝合金压铸模具受到熔融金属注入时的高温、高压和热应力作用,容易发生变形,甚至开裂。
因此,模具钢在工作温度下应具有足够的高温强度与韧度,以及较高的硬度和耐热性能。
3) 良好的导热性。
铝合金压铸模具长时间处于600~700~c高温作用下,为保证其他性能。
必须具有良好的导热性。
4) 良好的抗熔融金属的损伤性。
随着压铸机的大型化,压铸压力也在增大,已从低压的20~30mpa,提高到高压150~500mpa。