第十一章 化学动力学基础二.ppt
- 格式:ppt
- 大小:3.79 MB
- 文档页数:296
南京⼤学《物理化学》练习第⼗⼀章化学动⼒学基础_⼆_第⼗⼀章化学动⼒学基础(⼆)返回上⼀页1. 将1.0 g氧⽓和0.1 g氢⽓于300 K时在1 dm3的容器内混合,试计算每秒钟内单位体积内分⼦的碰撞数为若⼲?设O2和H2为硬球分⼦,其直径分别为0.339和0.247 nm.2. 某双原⼦分⼦分解反应的阈能为83.68 kJ/mol,试分别计算300 K及500 K时,具有⾜够能量可能分解的分⼦占分⼦总数的分数为多少?3. 某⽓相双分⼦反应, 2A(g) ---> B(g)+C(g),能发⽣反应的临界能为100 kJ/mol.已知A的相对分⼦量为60,分⼦直径为0.35 nm,试计算在300 K 时,该分解作⽤的速率常数k 值.4. 松节油萜(液体)的消旋作⽤上⼀级反应,在457.6 K和510.1 K时的速率常数分别为2.2×和3.07×min-1,试求反应的实验活化能E a,在平均温度时的活化焓和活化熵.5. 在298 K时某化学反应,如加了催化剂后使其活化熵和活化焓⽐不加催化剂是时分别下降了10 J/(mol·K)和10 kJ/mol,试求不加催化剂与加了催化剂的两个速率常数的⽐值.6. 在298 K时有两个级数相同的基元反应A和B,其活化焓相同,但速率常数k A=10k B,求两个反应的活化熵相差多少?7. 某顺式偶氮烷烃在⼄醇溶液中不稳定,通过计量其分解放出的N2⽓来计算其分解的速率常数k值,⼀系列不同温度下测定的k值如下所⽰:T/ k 248 252 256 260 264k×/s-1 1.22 2.31 4.39 8.50 14.3试计算该反应在298K时的实验活化能,活化焓,活化熵和活化吉布斯⾃由能.8. 对下述⼏个反应,若增加溶液中的离⼦强度,则其反应速率常数是增⼤,减⼩还是不变?(1) NH4+ +CNO- --->CO(NH2)2(2) 酯的皂化作⽤.(3) S2O82- + I- --->P9. 在298 K时,反应N2O4(g)2NO2(g)的速率常数k1=4.80×s-1,已知NO2和N2O4的⽣成吉布斯⾃由能分别为51.3和97.8 kJ/mol,试求(1)298 K时, N2O4的起始压⼒为101.325 kPa时, NO2(g)的平衡分压?(2)该反应的弛豫时间?10. ⽤温度跳跃技术测量⽔的离解反应: H2O H+ + OH-,在298 K时的弛豫时间τ=37×s,试求该反应正向和逆向反应的速率常数k1和k-2.11. 在光的影响下,蒽聚合为⼆蒽.由于⼆蒽的热分解作⽤⽽达到光化平衡.光化反应的温度系数(即温度每增加10K反应速率所增加的倍数)是1.1,热分解的温度系数是2.8,当达到光化平衡时,温度每升⾼10K.⼆蒽产量是原来的多少倍?12. ⽤波长为313nm的单⾊光照射⽓态丙酮,发⽣下列分解反应:(CH3)2CO +hv---> C2H6 + CO ,若反应池的容量是0.059 dm3,丙酮吸收⼊射光的分数为0.915,在反应过程中,得到下列数据:反应温度:840 K 照射时间t=7 h起始压⼒:102.16 kPa ⼊射能48.1×J/s,终了压⼒:104.42 kPa计算此反应的量⼦效率.13. 有⼀酸催化反应A+B C+D,已知该反应的速率公式为d[C]/dt=k[H+][A][B] ,当[A]0=[B]0=0.01 mol·dm-3时,在pH=2的条件下,在298 K时的反应的半衰期为1 h,若其他条件不变,在288 K时t1/2为2 h,试计算(1)在298 K时反应的速率常数k值。
第十一章化学动力学基础(二)通过本章学习理解碰撞、过渡态和单分子反应理论,了解一些特殊反应的动力学规律。
(一)基本要求和基本内容:基本要求1.了解化学反应动力学的碰撞、过渡态和单分子反应理论的基本内容,弄清几个能量的不同物理意义及相互关系。
2.了解溶液中反应的特点和溶剂对反应的影响。
3.了解快速反应所常用的测定方法及弛豫时间4.了解光化学反应和催化反应的特点。
重点和难点:过渡态理论中E c、E b、E0、ϑmrH#∆、ϑmrS#∆与Ea之间的关系:基本内容一、碰撞理论1.双分子的互碰频率2.硬球碰撞模型3.微观反应和宏观反应之间的关系4.反应阈能与实际活化能的关系5.概率因子二、过渡态理论1.势能面2.由过渡态理论计算反应速率3.E c、E b、E0、θmrH∆、θmrS∆与Ea和指前因子A之间的关系三、单分子反应理论四、在溶液中进行的反应1.溶剂对反应速率的影响2.原盐效应3.扩散控制反应五、快速反应的测试1.弛豫法2.闪光光解六、光化学反应1.光化学基本定律2.量子产率3.分子的能态4.光化反应动力学5.光化平衡和温度对光化学反应的影响6.感光反应、化学发光七、催化反应动力学1.催化剂与催化作用2.均相酸碱催化3.络合催化(配位催化)4.酶催化反应(二) 基本理论及公式1. 碰撞理论 ⑴ 要点① 反应物分子必须经过碰撞过程才有可能变成产物 ② 只有能量较大的活化分子的碰撞才能发生化学反映⑵ 计算公式① 不同种物质分子间的碰撞次数 [][]B A RTLdB dA Z ABπμπ222⎪⎭⎫ ⎝⎛+=② 同种物质分子间的碰撞次数 []2222A RTLd Z AA AA πμπ=③ 有效碰撞分数)e x p (RTE q C -= E C 为临界能,是基元反应所必需的能量。
④ 不同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AB exp 82ππ ⑤ 同种分子间碰撞反应的速率常数⎪⎭⎫⎝⎛-=RT E M RTLd k C AA exp 22ππ ⑶ 解决的问题① 揭示了反应究竟是如何进行的一个简明﹑清晰的物理现象 ② 解释了简单反应速率公式及阿累尼乌斯公式成立的依据③ 解决了反应速率常数的求算问题 ④ 说明了Ea 与T 间的关系RT E E C a 21+=2. 过渡状态理论 ⑴ 要点反应物先形成不稳定的活化络合物,活化络合物与反应物之间迅速达成化学平衡,另一方面活化络合物转化为产物[]C B A C B A C B A +-→⋅⋅⋅⋅⋅⋅⇔-+≠⑵ 计算公式① 用统计热力学方法计算速率常数⎪⎭⎫ ⎝⎛-⋅⋅=∏≠RT E f f hT k k BBB 0'exp② 用热力学方法计算速率常数 (ⅰ) ()()⎪⎪⎭⎫ ⎝⎛∆-⋅⋅=≠-ΘRT G Ch T k k l nB exp 1 或,≠⋅=C B K h Tk k 或,()⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⋅=Θ≠-ΘRT H R S ChT k k m r mr nB exp exp 1 (ⅱ) ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=≠-RTG RT P h T k k PnB exp 1 或 ⎪⎪⎭⎫⎝⎛∆-⋅⎪⎪⎭⎫⎝⎛∆-⋅⎪⎭⎫⎝⎛⋅=Θ≠-RT H RS RT P h T k k P r Pr nB exp exp 1 ③ 几个能量及其关系 (ⅰ) RT E EC a 21+=Ea 活化能,Ec 分子发生有效反应所必须超过的临界能 (ⅱ)mRT E E a +=0E 0 活化络合物的零点能与反应物零点能之差式中m 包括了普适常数项中及配分函数项中所有与T 有关的因子,对一定的反应体系,m 有定值。
第十一章化学动力学基础(二)本章内容:介绍碰撞理论,过渡状态理论和单分子反应理论。
了解分子反应动力学的常用实验方法,快速反应所常用的测试方法,说明溶液中反应的特点和溶剂对反应的影响;了解光化学反应的特点及量子产率的计算;介绍催化反应的特点和常见的催化反应的类型。
第一节碰撞理论(simple collision theory)一、碰撞理论基本论点分子碰撞理论是在接受了阿仑尼乌斯活化态、活化能概念的基础上,利用分子运动论于1918 年由路易斯建立起来的。
其基本论点是:1.反应物分子要发生反应必须碰撞,反应物分子间的接触碰撞是发生反应的前提;2.不是任何反应物分子间的碰撞均能发生反应,只有那些能量较高的活化分子、并满足一定的空间配布几何条件的碰撞反应才能发生;3.活化分子的能量较普通能量高,它们碰撞时,松动并部分破坏了反应物分子中的旧键,并可能形成新键,从而发生反应,这样的碰撞称为有效碰撞或非弹性碰撞,活化分子愈多,发生化学反应的可能性就愈大;4.若从Z A,B表示单位时间、单位体积内A,B分子碰撞总数,以q代表有效碰撞在总碰撞数Z A,B中所占的百分数,则反应速率可表示为二、双分子的互碰频率设A、B两种分子都是完全弹性的、无压缩性的刚球,二者半径各为1/2d A, 1/2d B, 单位体积中A的分子数为nN A/V, A分子运动的平均速率为〈U A〉。
假定B分子是静止的,那么一个A 分子与静止B 分子的碰撞次数为,A、B 分子的碰撞直径为d AB = 1/2(d A +d B),碰撞截面为πd2AB,,在时间t内,A分子走过的路程为〈U A〉t,碰撞截面所掠过的体积为〈U A〉tπd2AB, 凡是质心落在这个体积内的静态B分子都可能与A碰撞。
所以移动着的A分子在单位时间内与静止B分子相碰的次数(即碰撞频率)为,由于B分子也在运动,因此要用相对速率u r来代替平均速率(u),A与B的相对速率有几种情况考虑平均情况,则那么,一个运动着的A 分子与运动着的B 分子互相碰撞频率为那么,单位时间、单位体积内所有运动着的A、B 分子碰撞的总次数为对于浓度为[A]的同种分子,则三、硬球碰撞摸型设A.和B为两个没有结构的硬球分子,质量分别为m A和m B,折合质量为μ,运动速度分别为u A、u B,总能量E为'四、微观反应与宏观反应之间的关系反应截面是微观反应动力学基本参数,而速率常数k和实验活化能E a 等是宏观反应动力学参数。