变压器纵差保护仿真
- 格式:doc
- 大小:275.00 KB
- 文档页数:6
电力变压器保护系统研究及仿真发布时间:2021-01-13T03:46:29.202Z 来源:《中国电业》(发电)》2020年第23期作者:邓召平水顺才杨文招[导读] 电力变压器是电力系统正常运行中必不可少的一个关键运行部件,运行状况与设备质量直接关系到整个电力系统的安全与稳定性。
云南电网有限责任公司保山供电局云南保山 678000摘要:随着人们生活水平的不断提高,对电力的需求量不断增加。
目前,电力变压器是电力系统中必不可少且不能代替的重要电气设备,对整个电力系统而言,当发生故障后如果没有及时得到正确的处理方法,将会带来严重的危害,因此,继电保护功能在变压器中有着举足轻重的地位。
本文针对变压器不同故障进行了系统保护设计,并利用MATLAB/Simulink仿真平台进行仿真模拟与分析。
关键词:变压器;继电保护;系统设计;仿真引言电力变压器是电力系统正常运行中必不可少的一个关键运行部件,运行状况与设备质量直接关系到整个电力系统的安全与稳定性。
同时,电力变压器的绝缘状态又直接影响到变压器的整体运行状况,其中局部放电产生大量的电、光、声、热等的物理、化学效应,是造成电力变压器绝缘老化、变形的主要原因,进而可能由此造成不同程度的电力事故。
为应对局部放电导致的变压器运行问题,近年来相关专家结合这些效应研发出了各类放电监测技术,如电脉冲法、光检测侧法、超声波法、超高频法、气相色谱法和红外热像法等,均有效地应用在了局部放电检测工作中,帮助整个电力工程正常运行。
1变压器结构及工作原理电力变压器是使用电磁感应的原理将一种交流电压能转换成另一种同频率的交流电压能。
电力变压器的工作原理可以用六个字来概括“电生磁,磁生电”。
电力变压器一次侧通过变化的交流电,这种变化的电流在由铁芯组成的主磁通回路中产生交变的主磁通,主磁通同时通过一次绕组与二次绕组,根据电磁感应原理,在电力变压器的一次绕组中会产生自感应电动势,而在二次绕组中也会产生互感应电动势。
电力变压器保护系统研究及仿真摘要:目前,我国的电力工程建设的发展迅速,随着电力系统设备的完善,中国的“西电东送、南北互供、全国互联”的发展非常的成功,电能的传送距离增加、电网所覆盖的区域越来越宽、电网的储存容量也在增大,对电网安全、可靠以及稳定的运行有了很高的要求。
电力变压器对整个电力系统中发电、输电以及配电有着不可替代的作用。
依据《继电保护和自动装置设计技术规程》,给电力变压器应该配备下面的几种保护装置,比如在油箱内部要增加油位过低或者是短路的保护装置,以及绕组和引出线多相发生短路等等的纵联差动保护;大电流方式的接地系统中的变压器外围的接地故障而设置的零序电流保护;变压器对称方向的过负荷所设定的过负荷保护等。
关键词:电力变压器;保护系统;研究及仿真引言电力变压器本身的特性以及在电力系统中的特殊作用,使得变压器运行稳定性成为影响电力系统供给稳定性的关键因素。
随着整体工业水平的提高,虽然电力变压器制造工艺有了长足进步,但21世纪以来,电力系统自动化程度进一步提高,使得电力系统更加智能化,复杂化。
电力变压器作为电力系统中举足轻重的调压设备,对其进行定期、及时的运行分析,并对已发现的隐患进行跟踪、处理和预判,是保证电力变压器运行稳定性的重要手段之一。
而电力变压器的预防性试验是发现其内部隐患,评估其性能的最重要方法,也是对其运行分析最重要的参考指标。
1故障出现的原因1.1绝缘老化绝缘老化故障的出现多是因为变压器使用运行时间较长,这使绝缘性能受到影响。
如果想要使变压器设备运行更稳定,就要使绝缘性能得以保障,否则会因为较差的绝缘效果使各种问题得以出现。
通常来说要掌握其设备运载量的承受程度,以使其运行处于正常的状态,避免在超负荷的情况下持续工作,以保持绝缘材料性能,维持变压器使用寿命。
1.2遭受雷击因为变压器功能的特殊性,很多情况下其安装使用是在室外进行的,也就是在露天环境运行,周围环境很容易对其性能产生影响,这其中就包括雷击影响,所以要对防雷设备进行科学合理的布控,避免雷雨天气使变压器发生故障。
第5章 变压器差动保护新思想及建模仿真研究纵联差动保护作为变压器的主保护,不平衡电流是影响其保护行为的主要因素。
不平衡电流产生的原因很多,大体上可分为稳态情况和暂态情况,暂态情况下的不平衡电流主要是励磁涌流,含有大量的非周期分量和谐波分量,基于此本章首次提出了非周期分量差动保护在电力变压器中的应用,并通过仿真验证分析。
5.1变压器纵差动保护的基本原理1I 2I 图5-1双绕组单相变压器纵差动保护的原理接线图首先以如图5-1所示的双绕组单相变压器为例介绍纵差动保护的基本原理[49]。
1I 、2I 为变压器两侧的一次电流,1I ' 、2I ' 为相应的电流互感器二次电流。
1I 的参考方向为母线指向变压器,电流互感器的正极性(标*号者为正极性)置于靠近母线的一侧;2I 的参考方向为变压器指向母线,电流互感器的正极性置于靠近变压器的一侧。
将电流互感器不同极性的端子相连接。
差动继电器则并联在电流互感器的二次端子上。
流入差动继电器I I -的电流为12J I I I ''=- (5-1) jI 称为差动电流。
基本的差动继电器就是一个过流继电器,电流超过动作电流时继电器即动作。
因此纵差动保护的动作判据为J dz I I > ( 5-2)式中dz I 为纵差动保护的动作电流。
12J I I I ''=- 为差电流的有效值。
设变压器的变比为12/B n U U =,忽略变压器的损耗,正常运行和区外故障时有21B I n I = 。
式(5-1)可进一步表示为1211221(1)B LH B J LH LH LH n I I n n I I n n n -=+- (5-3)式中,1LH n 、2LH n 分别为两侧电流互感器的变比。
若选择电流互感器的变比,使之满足21LH B LH n n n = (5-4) 这样式(5-3)就变为122B J LH n I I I n -=(5-5) 根据式(5-5),正常运行和变压器外部故障时,差电流为零,保护不会动作;变压器内部(包括变压器与电流互感器之间的引线)任何一点故障时,相当于变压器内部多了一个故障支路,流入差动继电器的差电流等于故障点电流(折算到电流互感器二次侧),只要故障电流大于差动继电器的门槛值,差动保护就会迅速动作。
变压器纵差保护仿真本保护仿真以变压器中压侧发生保护区内外故障时为例,仿真对象在模型左侧110kV 出口处的三绕组变压器T31,该变压器各电压等级侧均有自己的断路器(QF1、QF3、QF4),且各侧电流均只采用A相差动电流和制动电流,故障的仿真时间均定为0.6s,仿真时两台三绕组主变(T31与T32)并列运行。
在已建立的变电站系统模型上将短路模块接入该变压器35kV中压侧保护区内和区外,增设内外故障模拟模块,即Fault(IN)和Fault(OUT),用于模拟差动保护区内外的各类故障情况。
建立模型如图6.6所示:图1 110kV变电站变压器中压侧差动保护Simulink模型为仿真三绕组变压器比率制动式纵差保护区内外故障时的电流,在原先模型上增加运算及示波器模块如图图2 变压器中压侧保护区内、外故障仿真时增加的运算及示波器模块考虑到110/35/10的变压器变比,对中压侧和低压侧A相电流进行适当增益,使得各侧A相电流幅值大小相仿。
另外该变压器中存在Y/△联接方式,故Y侧电流滞后△侧电流30º,所以对低压侧A相电流采用适当的时间延时,使得正常运行时的各侧A相电流相位一致,因为工频为50Hz,一个电流周期为0.02s,为使△侧电流延迟30°,可延时0.02 30/360=0.00167s即可。
延时设置界面如图图3△侧A相电流延时模块参数设置差动电流理论表达式为变压器两侧二次侧电流之和的绝对值,制动电流理论上取变压器两侧二次电流之差的绝对值的一半,而仿真测量模块V-I工作原理实际为监控电流一次侧值。
当内部故障发生时,因两个测量模块所测一次侧短路电流均流向内部故障点,实际短路电流方向相反,因而差动电流为 Id=Iah+Ial-Iam ,使保护能够灵敏动作,其中Iah是高压侧A相短路电流,Ial是低压侧A相短路电流,Iam是中压侧A相短路电流。
外部故障时,测量模块所测一次侧短路电流均流向外部故障点,方向相同,因而制动电流取为Ires=(Iah+Iam+Ial)/2,此时,差动电流Id为较小的不平衡电流,制动电流Ires有较强的制动作用。
基于 MATLAB的电力变压器比率制动式纵差保护仿真与研究1.兰州信息科技学院甘肃兰州7300002.国网兰州供电公司兰州倚能电力设计咨询有限公司甘肃兰州730050摘要:作为电力系统重要的元件,变压器起着电能分配的作用,其作用的得重要性不言而喻。
本文主要介绍变压器比率制动式纵差保护原理、计算,借助MATLAB-SIMULINK仿真平台搭建仿真模型,进行变压器区内区外故障仿真。
从仿真结果可知,在变压器内部故障时,该保护可靠动作;在变压器正常运行和外部故障时,该保护正确制动,满足保护要求。
关键词:电力变压器;比率制动;差动保护引言继电保护系统技术主要是广泛指一种用来有效保障移动供电系统设备的安全与有效防止和暂时限制其在供电设备系统中长期或者较短时间内可能发生大或小面积突然停电的一种最基础、也是重要和有效的继电技术保护方法。
继电器的保护器制动装置一旦正常启动而仍然无法正确地进行动作,就很有可能会严重增加交通事故,酿成甚至更多的其他严重后果。
,是有效保障动力电网安全、稳定地正常运行的重中之必。
这种能够实现交流继电保护直流功能的短路装置被我们称为直流继电短路保护器。
2设计内容及要求2.1设计基本资料已知两台直流变压器都用的是三绕组,分级式的绝缘。
因为三绕组的电路相互关联,当运行时其中一个绕组短路电流的变化会影响另外两个绕组的电压。
其参数:,电压:,接线:(三个绕组中通常情况下会有一个三角形连接的绕组,其作用是用于减少三次谐波分量)。
短路电压:;,两台小型变压器不能同时正常工作,110kv侧中性连接点仅有可能同时连接一台小型变压器;同时若只有一台变压设备正常工作运行,因此,在此操作中共同工作的两个变压器的两个中性点必须同时接地,其余参数。
2.2 变压器选型作为一种电气系统中进行电力传输的重要部件, 根据GB50052和《发电厂电气设备》手册在变电站中,用来给电力系统或者用户提供电源的变压器被称为主要变压器。
热电厂主变压器的纵差动保护原理及整定方法浙江旺能环保股份有限公司 作者:周玉彩一、构成变压器纵差动保护的基本原则我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。
由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。
例如在图1中,应使图 '2I =''2I = 。
同的。
这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。
二、变压器纵差动保护的特点变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。
但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。
励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。
因此必须想办法解决。
为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。
经分析得出,励磁涌流具有以下特点:(1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。
根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器;İ1′′ n İ1′(2) 利用二次谐波制动;(3) 鉴别短路电流和励磁涌流波形的差别等。
摘要目前国内电力工业得到良好的发展成果,特高压输电线路创建完成,超大容量发电机组也开始产生,其中跨地区电网互联时期随之到来。
现在,电网系统更加复杂,综合规模稳步扩张,对电力系统稳定运作提出更加严苛的要求。
在电网中作为最重要的电力系统装置之一,变压器承担了电力系统中功率调节的功能,提升变压器保护的灵敏度和可靠性尤为关键。
但与其他一次性设备如母线等相比,变压器保护误动次数处于较高水平。
随着智能电站项目内开始使用电子变压器,我们也开始寻找到全新分析角度。
尤其是为此领域纵差保护的研究提出了一个新的方向。
关键词:三绕组;变压器;继电SummaryWith the development and progress of electric power in our country, the continuous construction of UHV transmission lines, the increase of super-capacity units, the era of interconnection between regions has been gradually realized, and the complexity of power grid is gradually deepening.And the scale expands unceasingly, put forward the new request to the safe operation of the electric power system. As one of the most important electrical equipment in power system, transformer is carrying the role of power porter in the power network, so it is very important to improve the sensitivity and reliability of transformer protection. However, compared with other disposable equipment such as busbar, the statistics of misoperation times of transformer protection has always been at a relatively high level, and with the gradual use of electronic transformers in intelligent power plant projects, This brings a new research idea to transformer protection, especially the research direction of transformer longitudinal differential protection.Key words: three windings; Transformer; Relay目录摘要 (1)1 变压器保护Θ (5)1.1 励磁涌流 (7)2 继电保护装置原理 (9)2.1 纵差动保护 (9)2.2 变压器瓦斯保护 (9)2.3 平行双回线路横联方向差动保护 (9)2.4 复合电压启动的过电流 (10)2.5 变压器中性点直接接地零序电流保护工作原理 (10)2.6 过电流保护的构成及工作原理 (11)3 短路电流计算 (12)3.1 基本参数 (12)3.2画出短路等值电路 (13)3.3短路电流计算的过程 (14)3.4保护装置的配置 (15)4 各保护装置的整定计算 (16)4.1纵差保护的整定计算 (16)4.2 110kV侧复合电压启动过电流保护整定计算 (18)4.3 38.5kV侧方向过流保护 (18)4.4 110kV零序过电流保护 (19)4.5 变压器气体保护的整定 (19)5 差动元件基本原理 (20)5.1 差动元件的动作方程 (20)5.2 差动电流及制动电流的取得 (21)5.3 电流互感器二次接线进行相位补偿(外转角) (22)5.4 用保护内部算法进行相位补偿(内转角) (22)5.5 CT二次断线 (25)5.6 逻辑构成框图 (26)第六章三相变压器的仿真 (29)6.1 三相变压器仿真的数学模型 (29)6.2电源电压的描述 (34)6.3铁心动态磁化过程简述 (34)7 三绕组变压器的仿真与分析 (38)7.1空载合闸 (38)7.2内部故障 (40)结论 (48)致谢 (48)三绕组变压器纵差保护的设计与仿真1 变压器保护变压器是电力领域内不容忽视的重要装备,甚至影响整个系统的正常发电,供电与平稳运作。
基于Matlab的变压器差动保护闭环仿真研究摘要:应用Matlab建立了微机保护仿真系统,并对不同原理的变压器差动保护进行了仿真和比较。
仿真系统采用积木式结构.根据微机保护的实现原理构建模块,实现保护的闭环仿真,对保护的动作过程进行分析。
以变压器差动保护为例.研究比较了常规比率差动、复式比率差动、故障分量比率差动元件的工作原理.分析了=次谐波、波形对称原理识别励磁涌流的方法+构建了相应的保护模块并进行了仿真和比较。
仿真结果说明仿真系统可考核保护的各元件判据、动作定值、动作逻辑和分析特殊故障条件下保护内部元件的动作特性.实现保护动作全过程的闭环仿真。
关键词:Matlab;差动保护;仿真;闭环如何将传统的保护原理应用于微机中.并充分利用计算机在数字运算、逻辑处理、记忆方面的优势来改进、完善保护或探索新的保护原理,从而提高保护的总体性能.一直是广大继电保护工作者的重要任务。
但由于微机保护的原理是用软件实现,继电保护元件的内部动态行为难以得知.对于保护装置的误动和拒动.往往不清楚装置中是哪个模块或逻辑导致了保护的不正确动作”。
根据微机保护采集系统、数据处理算法、保护算法的工作原理.按积木式结构.构建了基于Matlab的微机保护闭环仿真系统。
并以变压器差动保护为例,对常规比率、复合比率、故障分量比率的差动保护及利用二次谐波、波形对称原理识别励磁涌流的方法进行比较研究,构建了相应的保护模块并在Simulink环境下进行闭环仿真和比较。
仿真系统可动态观察保护内部元件的动作过程,为改进、完善保护性能或验证新的保护原理,提出合理的方案提供了经济的数字仿真平台。
1 基于Matlab的保护原理闭环仿真系统利用Matlab提供的模块及编程环境,可构建微机保护数字采集系统模型。
实现处理数据的算法和保护算法,进而构建微机保护模块。
本仿真系统的总体设计框图如图1所示。
电力系统的一次系统根据保护的应用环境利用simulink电力系统工具箱直接搭建,微机保护模块根据保护的实现原理搭建。
变压器纵差保护仿真
本保护仿真以变压器中压侧发生保护区内外故障时为例,仿真对象在模型左侧110kV出口处的三绕组变压器T31,该变压器各电压等级侧均有自己的断路器(QF1、QF3、QF4),且各侧电流均只采用A相差动电流和制动电流,故障的仿真时间均定为0.6s,仿真时两台三绕组主变(T31与T32)并列运行。
在已建立的变电站系统模型上将短路模块接入该变压器35kV中压侧保护区内和区外,增设内外故障模拟模块,即Fault(IN)和Fault(OUT),用于模拟差动保护区内外的各类故障情况。
建立模型如图6.6所示:
图1 110kV变电站变压器中压侧差动保护Simulink模型
为仿真三绕组变压器比率制动式纵差保护区内外故障时的电流,在原先模型上增加运算及示波器模块如图
图2 变压器中压侧保护区内、外故障仿真时增加的运算及示波器模块考虑到110/35/10的变压器变比,对中压侧和低压侧A相电流进行适当增益,使得各侧A相电流幅值大小相仿。
另外该变压器中存在Y/△联接方式,故Y侧电流滞后△侧电流30º,所以对低压侧A相电流采用适当的时间延时,使得正常运行时的各侧A相电流相位一致,
因为工频为50Hz,一个电流周期为0.02s,为使△侧电流延迟30°,可延时0.02 30/360=0.00167s即可。
延时设置界面如图
图3 △侧A相电流延时模块参数设置
页
差动电流理论表达式为变压器两侧二次侧电流之和的绝对值,制动电流理论上取变压器两侧二次电流之差的绝对值的一半,而仿真测量模块V-I工作原理实际为监控电流一次侧值。
当内部故障发生时,因两个测量模块所测一次侧短路电流均流向内部故障点,实际短路电流方向相反,因而差动电流为 Id=Iah+Ial-Iam ,使保护能够灵敏动作,其中Iah是高压侧A相短路电流,Ial是低压侧A相短路电流,Iam是中压侧A相短路电流。
外部故障时,测量模块所测一次侧短路电流均流向外部故障点,方向相同,因而制动电流取为Ires=(Iah+Iam+Ial)/2,此时,差动电流Id为较小的不平衡电流,制动电流Ires有较强的制动作用。
当两台变压器T31、T32并列运行,设置断路器QF1、QF2、QF3、QF4切换时间为0s。
如上面接线图所示,故障模块Fault(IN)接在所测三绕组变压器T31的中压侧保护区内部,为内部故障模块,故障模块Fault(OUT)接在T31的保护区外部,为外部故障模块。
设置保护区其内部故障模块Fault(IN)在0.2~0.4s时间段内发生单相接地短路故障,并且区外部故障模块Fault(OUT)不动作。
其中Fault(IN)故障模块设置如图
图3内部故障FaultIN发生单相接地短路时的参数设置界面运行仿真,由示波器scope1得到下图波形:
图4 中压侧内部发生单相接地短路故障电流波形图
由上图可见:三绕组变压器T31中压侧保护区内部发生单相接地短路故障时,差动电流Id明显大于制动电流Ires,则保护可以可靠启动。
当中压绕组外部故障Fault(OUT)设置为在0.2~0.4s内发生单相接地短路,并且内部故障Fault(IN)切换时间大于仿真时间,Fault(OUT)设置如Fault(IN)一致,运行仿真得到如图波形:
图5 中压侧保护区外侧发生单相接地短路时的电流波形图
显然制动电流Ires大于差动电流Id,即保护不会动作。
将中压绕组区内故障Fault(IN)设置为在0.2~0.4s内发生三相短路,并且外部故障Fault(OUT)不动作时,Fault(IN)设置如图6.12:
图6 内部故障Fault(IN)发生三相短路时的参数设置界面运行仿真,由示波器scope1得到图波形:
图7 中压侧内部发生三相短路故障电流波形图
显然:差动电流Id明显大于制动电流Ires,则保护可以可靠启动。
当设置中压绕组外部故障Fault(OUT)为在0.2~0.4s内发生三相短路,并且内部故障Fault(IN)不动作时,Fault(OUT)设置如Fault(IN)一致,运行仿真得到如图3.14所示波形:
图8 中压侧外部发生三相短路故障电。