正弦交流电路的相量图求解
- 格式:ppt
- 大小:356.50 KB
- 文档页数:12
正弦稳态交流电路相量的研究(单相交流电路实验)一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系2.掌握日光灯线路的接线。
3.理解改善电路功率因数的意义并掌握其方法。
二、原理说明1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即i =∑0 和U =∑2.如图13-1 所示的RC 串联电路,在正弦稳态信号 U 的激励下,R U 与 U C 保持有90°的相位差,即当阻值R改变时, U R 的相量轨迹是一个半圆, U 、 U C 与 U R三者形成一个直角形的电压三角形。
R值改变时,可改变φ角的大小,从而达到移相的目的。
图 13-13.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容器,用以改善电路的功率因数(cos φ值)。
图 13-2有关日光灯的工作原理请自行翻阅有关资料。
三、实验设备四、实验内容(1)用两只15W /220V的白炽灯泡和4.7µf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。
记录U、U R、U C 值,验证电压三角形关系。
(2)日光灯线路接线与测量图13-3按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。
然后将电压调至220V,,,等值,验证电压、电流相量关系。
测量功率P,电流I,电压U UUL A(3)并联电路——电路功率因数的改善按图13-4组成实验线路图13-4经指导老师检查后,按下绿色按钮开关调节自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电流取样插座分别测得三条支路的电流,改变电容值,进行三次重复测量。
五、实验注意事项1.本实验用交流市电220V,务必注意用电和人身安全。
一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 掌握日光灯线路的接线。
3. 理解改善电路功率因数的意义并掌握其方法。
二、原理说明 1. 在单相正弦交流电路中,用交流电流表测得 各支路的电流值,用交流电压表测得回路各元件两 端的电压值,它们之间的关系满足相量形式的基尔 霍夫定律,即。
图4-1 RC 串联电路2. 图4-1所示的RC 串联电路,在正弦稳态信号U 的激励下,U R 与U C 保持有90º的相位差,即当 R 阻值改变时,U R 的相量轨迹是一个半园。
U 、U C 与 U R 三者形成一个直角形的电压三角形,如图4-2所 示。
R 值改变时,可改变φ角的大小,从而达到移相的目的。
3. 日光灯线路如图4-3所示,图中 A 是日光灯管,L 是镇流器, S 是启辉器,C 是补偿电容器,用以改善电路的功率因数(cos φ值)。
有关日光灯的工作原理请自行翻阅有关资料。
图4-3 日光灯线路序号 名称 数量 备注1 电源控制屏(调压器、日光灯管) 1 DG01或GDS-012 交流电压表 1 D36或GDS-113 交流电流表 1 D35或GDS-124 三相负载 1 DG08或GDS-06B5 荧光灯、可变电容 1 DG09或GDS-096 起辉器、镇流器、电容、电门插座DG09或GDS-097 功率表 1 D34或GDS-13220VL S A CRjXcUcU R IU RU U cI φֹ四、实验内容1. 按图4-1接线。
R为220V、15W的白炽灯泡,电容器为4.7μF/450V。
经指导教师检查后,接通实验台电源,将自耦调压器输出(即U)调至220V。
记录U、U R、U C值,验证电压三角形关系。
2. 日光灯线路接线与测量。
图4-4(1)按图4-4接线。
(2)经指导教师检查后接通实验台电源,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚刚启辉点亮为止,记下三表的指示值。
正弦交流电的表示法2.1.2 正弦量的相量表示法如前所述,一个正弦量由幅值、角频率和初相位三个要素确定,而正弦量的这些特征,可以用正弦波和三角函数表示出来。
除此之外,还可以用相量表示,复数是相量的基础。
(1)复数如图2-6所示,一复数A,a1为其实部,a2为其虚部,a为其长度,则复数A可用四种形式来表示:图2-6 复平面上表示复数A①代数式A=a1+j a2(2-8)为虚单位。
②三角函数式令复数A的模|A|=a,φ角是复数A的辐角,有A=|A|(cosφ+jsinφ)=a(cosφ+jsinφ)(2-9)式中,,,③指数式根据欧拉公式e jφ=cosφ+jsinφA=a e jφ(2-10)④极坐标式极坐标式是复数指数式的简写,这四种复数的表示形式,可以相互转换。
复数的指数形式(或极坐标形式)与复数的三角函数式之间可以通过欧拉公式进行转换,指数形式(或极坐标形式)要变换成代数式可以通过欧拉公式进行转换;代数式变换成指数形式(或极坐标形式)可以通过式(2-9)进行转换。
(2)正弦量的相量表示用复数来表示正弦量的方法称为正弦量的相量表示法,即用复数的模来表示正弦量的幅值(最大值或有效值),用复数的辐角来表示正弦量的初相位。
只有同频率的正弦量用相量进行分析计算才有意义,它使得正弦交流电路的分析和计算变得更为简单。
在线性正弦交流电路中,各部分的电流和电压都是同频率的正弦量。
因为频率不变,所以可以用相量来表示正弦量。
正弦量的相量形式是用大写字母上面加小圆点表示。
例如,“”“”“”等。
同理,可自行写出和相量。
相量、、称为有效值相量,、、称为最大值相量或幅值相量。
相量在复平面上的几何图形叫做相量图,如图2-7所示。
图2-7 正弦量的相量图同频率的正弦量,由于它们之间相位的相对位置不变,即相位差不变,因此可以将它们的相量画在同一个坐标上。
不同频率的正弦量,用相量表示时,不能画在同一相量图上。
(3)相量运算相量的运算规则符合复数运算中的交换律、结合律和分配律等。
正弦稳态交流电路相量实验报告正弦稳态交流电路相量实验报告导言:在电路实验中,正弦稳态交流电路是一种常见且重要的电路。
它由电源、电阻、电感和电容等元件组成,能够实现电能的传输和转换。
本实验旨在通过实际操作,探究正弦稳态交流电路中的相量特性,并分析其对电路性能的影响。
实验目的:1. 了解正弦稳态交流电路的基本原理和特性;2. 学习如何使用相量法分析电路;3. 掌握相量法在电路分析中的应用。
实验仪器和材料:1. 交流电源2. 电阻、电感、电容等元件3. 示波器4. 万用表实验步骤:1. 搭建正弦稳态交流电路,包括电源、电阻、电感和电容等元件。
确保电路连接正确,并注意安全。
2. 使用示波器测量电路中的电压和电流波形,并记录数据。
3. 利用万用表测量电路中的电压和电流值,并记录数据。
4. 根据测量数据,计算电路中的功率、电阻、电感和电容等参数。
5. 使用相量法分析电路,绘制电压和电流的相量图,并进行相量运算。
6. 分析实验结果,探讨电路中各元件对电路性能的影响。
实验结果与分析:通过实验测量和计算,得到了电路中的电压、电流、功率等参数。
利用相量法分析电路,绘制了电压和电流的相量图,并进行了相量运算。
通过对实验结果的分析,可以得出以下结论:1. 电阻对电路的电压和电流波形没有相位差,且大小与电流成正比。
2. 电感对电路的电压和电流波形存在90度的相位差,且电压超前电流90度。
3. 电容对电路的电压和电流波形存在90度的相位差,且电流超前电压90度。
4. 电路中的功率是电压和电流的乘积,且功率因数是功率与视在功率的比值。
结论:通过本次实验,我们深入了解了正弦稳态交流电路的相量特性,并学会了使用相量法分析电路。
实验结果表明,电路中的电阻、电感和电容等元件对电路的电压、电流和功率等参数有着不同的影响。
掌握了这些特性和方法,我们能够更好地设计和优化电路,提高电路的性能和效率。
展望:正弦稳态交流电路是电路学习中的重要内容,本实验只是对其进行了初步的探究。