正弦交流电路的相量(图)法求解.
- 格式:ppt
- 大小:564.50 KB
- 文档页数:16
第6章正弦稳态分析--相量法 (186)学习重点 (186)6.1 正弦量 (186)6.2 复数 (188)6.3正弦交流电的相量表示 (190)6.3.1问题的引入 (190)6.3.2正弦量的相量式表示 (190)6.3.3正弦量的相量图表示 (192)6.3.正弦量的相量表示的应用 (192)6.4 KCL、KVL相量形式 (194)6.5 电阻、电感和电容元件VCR的相量形式 (195)6.6正弦交流电路的阻抗、导纳及等效 (198)6.6.1阻抗的概念 (198)6.6.2 导纳的概念 (200)6.7 正弦稳态电路的一般分析方法 (201)6.7.1 相量法的原理 (201)6.7.2 相量法的一般分析过程 (202)6.7.3 相量图法 (205)6.8 有功功率、无功功率、视在功率和复功率 (206)6.9 正弦稳态电路的功率守恒 (208)6.10 正弦稳态电路的最大功率传输 (212)6.11 仿真实验 (214)习题六 (216)185186第6章 正弦稳态分析--相量法学习要点(1)正弦量的三要素及相量表示;(2)复阻抗;(3)KCL 、KVL 的相量形式;(4)有功功率、无功功率、视在功率和复功率。
电路的正弦稳态分析是重要的基础性问题,相量法是分析正弦稳态电路的简便有效的方法,重点理解为什么要引入相量法?相量法与正弦量的关系?引入相量法后,还是利用电路的两大约束,应用电路的基本分析方法,求解电路的相量响应,然后进行相量反变换求出时域响应。
本章涉及到的主要概念:三要素、有效值、相量、阻抗、有功功率、无功功率、视在功率、功率因数、复功率和最大功率传输等问题。
6.1 正 弦 量在经典电路理论中,一般把方向和大小均呈现周期性变化(交变)的电压、电流等周期函数(信号)作为基本的分析对象。
其中最重要的周期函数就是按正弦规律变化的正弦量。
可以采用sine 或cos 函数描述正弦量,本书采用cos 函数描述正弦量。
正弦稳态交流电路相量的研究(单相交流电路实验)一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系2.掌握日光灯线路的接线。
3.理解改善电路功率因数的意义并掌握其方法。
二、原理说明1.在单相正弦交流电路中,用交流电流表则得各支中的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律,即i =∑0 和U =∑2.如图13-1 所示的RC 串联电路,在正弦稳态信号 U 的激励下,R U 与 U C 保持有90°的相位差,即当阻值R改变时, U R 的相量轨迹是一个半圆, U 、 U C 与 U R三者形成一个直角形的电压三角形。
R值改变时,可改变φ角的大小,从而达到移相的目的。
图 13-13.日光灯线路如图13-2 所示,图中A是日光灯管,L是镇流器,S是启辉器,C是补偿电容器,用以改善电路的功率因数(cos φ值)。
图 13-2有关日光灯的工作原理请自行翻阅有关资料。
三、实验设备四、实验内容(1)用两只15W /220V的白炽灯泡和4.7µf/450V电容器组成加图13-1所示的实验电路,经指导老师检查后,接通市电220V电源,将自藕调压器输出调至220V。
记录U、U R、U C 值,验证电压三角形关系。
(2)日光灯线路接线与测量图13-3按图13-3组成线路,经指导教师检查后按下闭合按钮开关,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉点亮为止,记下三表的指示值。
然后将电压调至220V,,,等值,验证电压、电流相量关系。
测量功率P,电流I,电压U UUL A(3)并联电路——电路功率因数的改善按图13-4组成实验线路图13-4经指导老师检查后,按下绿色按钮开关调节自耦调压器的输出调至220V,记录功率表,电压表读数,通过一只电流表和三个电流取样插座分别测得三条支路的电流,改变电容值,进行三次重复测量。
五、实验注意事项1.本实验用交流市电220V,务必注意用电和人身安全。
4-1 正弦交流电路的分析方法一、用向量表示正弦量表示正弦量的方法:三角函数式、波形图、相量图(式)。
一、正弦量的旋转矢量表示1、相量:在一平面直角坐标系上画一矢量,它的长度等于正弦量的最大值,它与横轴正方向之间的夹角为正弦量的初相,而角速度因是固定的也可不必再标明,这种仅反映正弦量的最大值和初相的“静止的”矢量,称为相量。
如:∙m I 、∙m U 、∙m E 。
有效值相量:表示出正弦量的有效值和初相位的相量。
如:∙I 、∙U 、∙E 。
2、注意:⑴相同单位的量应按相同的的比例尺来画,不同单位的量可以用不同的比例尺来画;⑵只有同频率的正弦量才能画在同一相量图上,否则无法进行比较和运算。
二、同频率正弦量的加、减确定m I 和ψ可用曲线相加法,也可用相量作图法。
1、 相量作图法的步骤:先用出相量1∙I 和2∙I ,而后以1∙I 和2∙I 为邻边作一平行四边形,其对角线即为合成电流i 的相量∙I 。
∙I的长度为有效值,∙I 与横轴正方向的夹角即为初相ψ。
2、应用相量作图法对正弦量进行减法时,实质与加法相同。
例如: ∙∙∙∙∙-+=-=)(2121I I I I I 3、三角形法求矢量加、减两矢量求和:两相量“头尾相连”,第三条边即是它们的和。
两矢量求差:两相量“尾尾相连,指向最减数的第三边即为它们的差。
多个相量相加时:各相量“头尾相连”,由第一个相量的箭尾和最后一个相量的箭头作一相量,即为求和的相量。
三、相量的复数表示式把一个表示正弦量的相量画在复平面上,相量便可以用复数来表示,从而正弦量也就可以用复数表示。
jb a I +=∙其中,a----实部,b----虚部ψψsin ,cos I b I a ==则: ()ψψψψsin cos sin cos j I jI I jb a I +=+=+=∙,式中,I----复数的模,ψ----复数的幅角ab tg b a I =+=ψ,22复数的三角函数形式变换为指数形式再简写为极坐标形式为:ψψ∠==∙I Ie I j复数和正弦量之间也是一一对应的关系,表示正弦量的复数称为相量表示式,也简称相量,以后述及相量,若进行运算指复数运算,若作图指位置在初始时间的相量图。
第八章相量图和相量法求解电路一、教学基本要求1、掌握阻抗的串、并联及相量图的画法。
2、了解正弦电流电路的瞬时功率、有功功率、无功功率、功率因数、复功率的概念及表达形式。
3、熟练掌握正弦电流电路的稳态分析法。
4、了解正弦电流电路的串、并联谐振的概念,参数选定及应用情况。
5、掌握最大功率传输的概念,及在不同情况下的最大传输条件。
二、教学重点与难点1. 教学重点: (1).正弦量和相量之间的关系;(2). 正弦量的相量差和有效值的概念(3). R、L、C各元件的电压、电流关系的相量形式(4). 电路定律的相量形式及元件的电压电流关系的相量形式。
2.教学难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。
三、本章与其它章节的联系:本章是学习第 9-12 章的基础,必须熟练掌握相量法的解析运算。
§8.1 复数相量法是建立在用复数来表示正弦量的基础上的,因此,必须掌握复数的四种表示形式及运算规则。
1. 复数的四种表示形式代数形式A = a +j b复数的实部和虚部分别表示为: Re[A]=a Im[A]=b 。
图 8.1 为复数在复平面的表示。
图 8.1根据图 8.1 得复数的三角形式:两种表示法的关系:或根据欧拉公式可将复数的三角形式转换为指数表示形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表示形式及相互转换关系,这对复数的运算非常重要。
2. 复数的运算(1) 加减运算——采用代数形式比较方便。
若则即复数的加、减运算满足实部和实部相加减,虚部和虚部相加减。
复数的加、减运算也可以在复平面上按平行四边形法用向量的相加和相减求得,如图8.2所示。
图 8.2(2) 乘除运算——采用指数形式或极坐标形式比较方便。
若则即复数的乘法运算满足模相乘,辐角相加。
除法运算满足模相除,辐角相减,如图8.3示。
图 8.3 图 8.4(3) 旋转因子:由复数的乘除运算得任意复数A 乘或除复数,相当于A 逆时针或顺时针旋转一个角度θ,而模不变,如图 8.4 所示。
实验六正弦稳态交流电路相量的研究一、实验目的1. 了解交流电路中的相量概念。
2. 掌握相量合成、加减、旋转的方法。
3. 学会使用矢量图解法求解交流电路问题。
二、实验原理交流电路所涉及的量大都是随时间而变化的量,如电压、电流等。
在正弦稳态下,这些随时间而变化的量可以用相量来代替,从而方便地进行计算和分析。
对于一般的随时间而变化的量 a(t),其相量可以表示为:$A=\frac{2}{T}∫^{T/2}_{-T/2} a(t)cosω_0tdt+j \frac{2}{T}∫^{T/2}_{-T/2}a(t)sinω_0tdt$其中 $T=\frac{2π}{ω_0}$ 为一个周期,$ω_0=\frac{2π}{T}$ 为角频率。
这里所求的相量 A 是一个复数,它的实部表示信号在电路中的电压或电流的有效值,虚部表示信号在电路中的相位。
在交流电路中,有时需要将不同的相量合成为一个新的相量,或将一个相量分解为两个相互垂直的相量,或改变一个相量的大小和方向。
下面介绍相量合成、加减、旋转的方法:(1)相量的合成:设有两个相量 $A_1$ 和 $A_2$,其大小和方向分别为 $|A_1|$、$\varphi_1$ 和$|A_2|$、$\varphi_2$,则它们的和为:$A=A_1+A_2=|A_1|cos\varphi_1+j|A_1|sin\varphi_1+|A_2|cos\varphi_2+j|A_2|sin\va rphi_2=|A|cos\varphi+j|A|sin\varphi$其中,$|A|=\sqrt{|A_1|^2+|A_2|^2-2|A_1||A_2|cos(\varphi_1-\varphi_2)}$当需要改变一个相量的大小和方向时,可以进行相量的旋转操作。
设有一个相量 A,大小为 |A|,方向为 $\varphi_A$,现将其旋转一个角度θ,则旋转后的相量 A' 大小为 |A|,方向为 $\varphi_A+\theta$,可利用欧拉公式进行计算:即,$A'=Ae^{j\theta}$其中,e 为自然对数的底数。