分段函数、图像测试题
- 格式:doc
- 大小:346.00 KB
- 文档页数:3
24号作业1.当m 为怎样的实数时,方程x 2-4|x |+5=m 有四个互不相等的实数根?(分画出函数图像以及00<>x x )2.若函数f (x )的定义域为[-1,2],则y =f (x )+f (-x )的定义域为________3.已知函数f (1-x 1+x)=x ,求f (x)________以及)2(f ________ 4..的值域求x x y -+=13,以及131+-=x x y 的值域(需要过程)5.画出下列函数图像,并求值域 (1)23)(2+-=x x x f (2))2()26523)(22<≥⎩⎨⎧++++=x x x x x x x f ( (3)65)(2+-=x x x f (分类讨论)(4) 的解集求11)(,)5()55(42)(2≥>≤≤-⎩⎨⎧+=x f x x x x x f , (5))0()0()0(212)(<=>⎪⎩⎪⎨⎧--=x x x x x f6.我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x (只)时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?7.为迎接马拉松比赛,厦门市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80%销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?(写背面)。
分段函数应用题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】分段函数应用题1.(四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2. (广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x的正比例函数; x≥15时,y是x的一次函数.3. (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元若该用户某月缴费105元时,则该用户该月用了多少度电4. 某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量的多少支付工资,甲装修公司应得多少元?5. 一名考生步行前往考场, 10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图2所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了多少分钟?6. 某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?7. 为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?8.有甲、乙两家通迅公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算如果她的月通话时间超过100分钟,又将如何选择9. 如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()10. 星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
高一数学函数图像试题答案及解析1.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳.(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.【答案】(1);(2)老师在时段内安排核心内容,能使得学生学习效果最佳.【解析】(1)这是分段函数的解析式的求解问题,采用分段求解的方法:在时,该图像是二次函数的图像,设这个二次函数的顶点式方程即,由点,可求出的值;在时,由点可求出直线的方程,最后写出函数的解析式即可;(2)求解不等式即或即可得到老师安排核心内容的时间段.试题解析:(1)当时,设 1分因为这时图像过点,代入得所以 3分当时,设,过点得,即 6分故所求函数的关系式为 7分(2)由题意得或 9分得或,即 11分则老师就在时段内安排核心内容,能使得学生学习效果最佳 12分.【考点】1.函数的实际应用问题;2.分段函数解析式的求解问题;3一次函数与二次函数的图像与性质;4.一次不等式与二次不等式.2.已知函数,不等式对任意实数恒成立,则的最小值是 .【答案】【解析】由分析可知要想恒成立,只能,因为,所以最小值为【考点】函数图像绝,对值不等式3.对于函数,下列结论中正确的是:()A.当上单调递减B.当上单调递减C.当上单调递增D.上单调递增【答案】A【解析】因为,所以当时,则,又,所以在区间上单调递减.【考点】分段函数的性质和图象.4.函数的图象的大致形状是A. B. C. D.【答案】C【解析】由题意函数可化为,又,故当时,函数为增函数,且,那么可排除B、D选项;而当时,函数为减函数,且.所以正确答案为C.【考点】1.分段函数;2.函数单调性、图像.5.若函数的图象不经过第二象限,则有A.B.C.D.【答案】B【解析】指数函数过定点,函数过定点如图所示,图象不过第二象限则,,故选:B.【考点】指数函数的图像6.同时满足以下三个条件的函数是()①图像过点;②在区间上单调递减③是偶函数.A.B.C.D.【答案】C【解析】选项A中,函数对称轴为x=-1,所以不是偶函数,排除A;选项B中,函数在区间上单调递增,排除B;选项D中,函数图像不过点,排除D.故选择C.【考点】函数的图像和性质.7.已知且,函数与在同一坐标系下的图象大致是【答案】B【解析】因为指数函数与单调性一样,则指数函数与单调性相反;又因为对数函过,所以过;故选B.【考点】指数函数与对数函数图像过定点及他们的单调性.8.已知定义域为R的函数f(x)在区间(8,+∞)上为减函数,且函数y=f(x+8)为偶函数,则A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)【答案】D.【解析】本题主要弄清楚函数与的图象之间的关系.函数的图象向左平移8个单位,得到函数的图象,反之,函数的图象可以看作是由函数的图象向右平移8个单位得到的.函数为偶函数,它的图象关于轴对称,因此函数的图象关于直线对称,∴,,再由于函数在为减函数,故正确答案为D.【考点】函数的图象及其对称性.9.已知函数的图象如图1,函数的图象如图2,则函数的图象大致是()【答案】A【解析】根据题意,结合已知函数值的符号来判定函数在原点附近,y轴的右侧函数值为正数,可知排除D,B然后在y轴的左侧,根据函数值的符号复数,可知排除C,,故选A.【考点】函数图像点评:主要是考查了函数图像的运用,属于基础题。
【导语】奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的初⼆奥数⼀次函数及分段函数测试题汇总,欢迎⼤家阅读。
⼀次函数测试题 ⼀.选择题(每⼩题3分,共30分) 1.函数y= 中,⾃变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠-2 2.关于函数y=-2x+1,下列结论正确的是()A.图形必经过点(-2,1)B.图形经过第⼀、⼆、三象限C.当x>时,y<0D.y随x的增⼤⽽增⼤ 3.如图,⼀次函数y=kx+b(k≠0) 的图象经过A,B两点,则关于x的不等式kx+b<0的解集是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1 4.直线y=-2x+m与直线y=2x-1的焦点在第四象限,则 m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1 5.若⼀次函数y=(1-2m)x+m的图象经过点A( , )和点B( , ),当<时,<,且与y轴相交于正半轴,则 m的取值范围是()A.m>0B.m<C.0<m<D. .m> 6.若函数y= 则当函数值y=8时,⾃变量x的值是() A. B.4C. 或4D.4或- 7.⼀艘轮船在同⼀航线上往返于甲、⼄两地,已知轮船在静⽔中的速度为15㎞/h,⽔流速度为5 ㎞/h,轮船先从甲地顺⽔航⾏到⼄地在⼄地停留⼀段时间后,⼜从⼄地逆⽔航⾏返回甲地,设轮船从甲地出发所⽤时间为 t(h),航⾏的路程s(㎞),则s与t 的函数图象⼤致是() 8.⼀次函数y=kx+b的图象如图所⽰,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-4 9.将直线y=-2x向右平移2个单位所得直线的解析式为()A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2) 10.如图,⼩亮在操场上玩,⼀段时间内沿M→A→B→M的路径匀速散步,能近似刻画⼩亮到出发点M的距离y与x之间关系的函数图象是() ⼆. 填空题(每⼩题3分,共24分) 11.将直线y=-2x+3向下平移2个单位得到的直线为。
分段函数考向一 分段函数的函数值1、已知f(x)={x 2+1,x ≥0−x +1,x <0,则f[f(−1)]的值为( ) A .5 B .2 C .-1 D .-2【答案】A 【解析】由f (x )={x 2+1,x ≥0−x +1,x <0, 可得f (−1)=1+1=2,f [f (−1)]=f (2)=4+1=5,故选A.2、设()()2010x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>,当12a =时,f (x )的最小值是_____;3、如图所示,函数f(x)的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则()13f f ⎛⎫ ⎪ ⎪⎝⎭的值等于________.【答案】24、已知函数y ={x 2+1,x ≤0−2x,x >0,若f(x)=10,则x=___________ 【答案】−3 【解析】因为函数f(x)={x 2+1,x ≤0−2x,x >0, 当x >0时,f (x )=−2x <0≠10,当x ≤0时,f (x )=x 2+1=10,可得x =3(舍去),或x =−3,故答案为−3.5、设函数()()20{ 2(0)x bx c x f x x ++≤=>若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.【答案】{-2,2}【解析】当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,所以()2222{(1)3b c c b c --+=--+=-,解得2{ 2b c ==-.故()()2220{ 2(0)x x x f x x +-≤=> 当x ≤0时,由f (x )=x ,得x 2+2x -2=x ,解得x =-2或x =1(1>0,舍去).当x >0时,由f (x )=x ,得x =2.所以方程f (x )=x 的解集为{-2,2}.6、已知f (x )=2(1),-20,21,02,-1,2,f x x x x x x +<<⎧⎪+≤<⎨⎪≥⎩(1)若f (a )=4,且a>0,求实数a 的值;(2)求3-2f ⎛⎫ ⎪⎝⎭的值.(2)2.【解析】(1)若0<a<2,则f (a )=2a+1=4, 若a ≥2,则f (a )=a 2-1=4,7、已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2. (1)求f (-5),f (-3),f ⎝⎛⎭⎫f ⎝⎛⎭⎫-52的值;(2)若f(a)=3,求实数a的值.(2)当a≤-2时,a+1=3,即a=2>-2,不合题意,舍去.当-2<a<2时,a2+2a=3,即a2+2a-3=0.∴(a-1)(a+3)=0,解得a=1或a=-3.∵1∈(-2,2),-3∉(-2,2),∴a=1符合题意.当a≥2时,2a-1=3,即a=2符合题意.综上可得,当f(a)=3时,a=1或a=2.考向二分段函数的图像1、函数f(x)=|x-2|能用分段函数的形式表示吗?能否作出其图象?【解析】能.f(x)=⎩⎪⎨⎪⎧x-2,x≥2,2-x,x<2.函数f(x)的图象如图所示.2、已知函数f(x)=24,02,042,4x xx x xx x+≤⎧⎪-<≤⎨⎪-+>⎩(1)求f(f(f(5)))的值;(2)画出函数的图象.【答案】(1)-1(2)作图见解析【解析】(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.3、已知函数()22g x x x =-+,()()2g x f x x ⎧⎪=⎨⎪⎩00x x ≥<,请画出函数()f x 的图像。
2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。
含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。
另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。
高三数学分段函数抽象函数与复合函数试题答案及解析1.设集合A=,函数,当且时,的取值范围是。
【答案】【解析】,解得,【考点】分段函数2.设函数,若,则 .【答案】【解析】若,则,所以,无解;若,则,所以,解得.故.【考点】分段函数,复合函数,容易题.3.设,则f(6)的值( )A.8B.7C.6D.5【答案】B【解析】.【考点】分段函数的函数值.4.已知函数.若,则的取值范围是 .【答案】【解析】当时,,∴;当时,,∴,综上所述的取值范围是.【考点】1、分段函数;2、一元二次不等式的解法.5.若关于的不等式存在实数解,则实数的取值范围是.【答案】【解析】由已知得,函数的最大值是,所以要使得不等式存在实数解,则,解得或.【考点】1.分段函数的图像与性质;2.解不等式6.已知函数,则= .【答案】【解析】这是分段函数的函数值计算问题,计算时一定要分清楚自变量的范围..【考点】分段函数.7.,则 .【答案】【解析】,.【考点】分段函数求值.8.已知函数则的值是 .【答案】【解析】,.【考点】分段函数求值.9.已知函数,,若函数有两个不同的零点,则实数的取值为( )A.或B.或C.或D.或【答案】D【解析】画出函数的图像如图.将的值代入解析式,然后画出图像,可知符合题意 .【考点】1.分段函数;2.数形结合.10.已知函数,则满足方程的所有的的值为 .【答案】0或3【解析】当时,,解得;当时,,解得.综上.【考点】1.分段函数;2.指数、对数函数的求值11.已知函数的图像在点处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)求函数在区间上的最大值;(Ⅲ)若曲线上存在两点使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)当时在[-1,2]上的最大值为2,当时在[-1,2]上的最大值为;(Ⅲ).【解析】(Ⅰ)由题意先对时的函数进行求导,易得,解得;(Ⅱ)因为函数为分段函数,要求在区间上的最大值,需分别求区间和上的最大值,当时,应对函数进行求导,求函数的单调性,从而求区间上的最大值;当时,应对函数分两种情况讨论,可得结论;(Ⅲ)根据条件可知的横坐标互为相反数,不妨设,其中,若,则,由是直角,得,即,方程无解;若,则由于中的中点在轴上,且,所以点不可能在轴上,即同理有,,得的范围是.试题解析:(I)当时,因为函数图象在点处的切线方程为,所以切点坐标为且解得. 4分(II)由(I)得,当时,令,可得或在和上单调递减,在上单调递增,所以在上的最大值为,当时,,当时,恒成立此时在[-1,2]上的最大值为;当时在[1,2]上单调递增,且,令则,所以当时在[-1,2]上的最大值为,当时在[-1,2]上的最大值为,综上可知,当时在[-1,2]上的最大值为2,时当时在[-1,2]上的最大值为. 9分(III)根据条件可知的横坐标互为相反数,不妨设,其中,若,则,由是直角,得,即,即此方程无解;若,则由于中的中点在轴上,且,所以点不可能在轴上,即同理有,,令由于函数的值域是所以实数的取值范围是 14分【考点】1、分段函数;2、利用导数求函数的单调性及最值;3、函数与导数的综合应用.12.已知函数的定义域为,则的定义域为()A.B.C.D.【答案】C【解析】由于复合函数的定义域为,即,所以,故函数的定义域为,故选C.【考点】复合函数的定义域13.已知函数,函数,若存在,使得成立,则实数的取值范围是 .【答案】.【解析】当时,,此时函数单调递减,则有,,当,,此时,则函数在上单调递增,,即,故函数在上的值域为,,所以,所以,由于,,,故有或,解得.【考点】1.函数的值域;2.存在性命题14.已知函数的定义域为,则函数的定义域是()A.[1,2]B.[0,4]C.(0,4]D.[,4]【答案】D【解析】依题意,得,即,故 .【考点】1.抽象函数的定义域;2.不等式的解法.15.某商场宣传在“五一黄金周”期间对顾客购物实行一定的优惠,商场规定:①如一次性购物不超过200元,不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款()A.608元B.574.1元C.582.6元D.456.8元【答案】C【解析】根据题意,应付款付款176元时没有折扣.付款432元时标价为432÷0.9=480(元).故两次购物的标价为176+480=656(元).500×0.9+(656-500)×0.85=582.6(元).【考点】分段函数.16.设函数,若是奇函数,则 .【答案】2【解析】依题意,由于是奇函数,,.【考点】分段函数,函数的奇偶性.17.已知.①若函数f(x)的值域为R,求实数m的取值范围;②若函数f(x)在区间(-∞,1-)上是增函数,求实数m的取值范围.【答案】① ;②.【解析】①根据复合函数中的对数函数和二次函数的图像和性质解题确定m的取值;②由复合函数的性质,结合二次函数的图像解题,判断区间端点与对称轴的位置关系,注意复合函数单调性的判断是本题的关键.试题解析:①设,要使得函数的值域为R,则能取遍所有的正数, 2分则有, 4分解得; 6分②函数的底数是,那么若函数f(x)在区间(-∞,1-)上是增函数,函数在区间上是减函数, 8分则有, 10分解得. 12分【考点】复合函数的性质,对数函数和二次函数的图像和性质的应用.18.已知函数则______.【答案】【解析】 , ,所以.【考点】分段函数求函数值.19.设函数则关于x的方程的根的情况,有下列说法:①存在实数k,使得方程恰有1个实数根②存在实数k,使得方程恰有2个不相等的实数根③存在实数k,使得方程恰有3个不相等的实数根④存在实数k,使得方程恰有4个不相等的实数根其中正确的是()A.①③B.①②C.②④D.③④【答案】B【解析】因为所以,当时,,,所以当时,关于x的方程的恰有一个实根,则①正确.当时,,所以当时,关于x的方程的恰有2个不相等实根,则②正确;③④错误.【考点】分段函数,方程的根的判断.20.已知函数,则满足的的取值范围是______.【答案】【解析】解不等式组得,解不等式组得,综上得的取值范围是【考点】分段函数的意义、解不等式.21.已知函数是定义在R上的偶函数, 且在区间单调递增. 若实数a满足, 则a的取值范围是()A.B.C.D.【答案】C【解析】排除法:令,则不等式变为,又因为函数是定义在R上的偶函数,所以有,成立,故排除B;令,则不等式变为,即,,而已知函数在区间单调递增,所以不成立,排除A、D,故选C.【考点】本小题主要考查抽象函数的性质(单调性、奇偶性)等基础知识,考查分析问题与解决问题的能力.3)=22.已知函数f(x)满足:当x≥4时,f(x)=x;当x<4时,f(x)=f(x+1).则f(2+log2 A.B.C.D.【答案】A.3)=,【解析】因为,所以f(2+log2又,所以.【考点】分段函数的应用.点评:本题考查分段函数求值及指数对数的性质,对基本运算规则掌握的熟练程度要求较高.23.已知函数若,则实数x的取值范围是()A.B.C.D.【答案】C【解析】画出该分段函数的简图可知,该函数在R上单调递增,所以.【考点】本小题主要考查函数单调性的应用和一元二次函数的解法.点评:解决此类问题,关键是求出已知函数的单调性,而分段函数不论分成几段,始终是一个函数.24.若且,在定义域上满足,则的取值范围是()A.(0,1)B.[,1)C.(0,]D.(0,]【答案】B【解析】根据分段函数单调性是增函数,则说明每一段都是增函数,同时在x=0处的函数值,3a ,故可知,同时要满足,然后求其交集得到为[,1),故选B.【考点】函数单调性点评:解决的关键是理解已知中表示的含义是说函数在定义域内是递增的,属于基础题。
分段函数、函数零点、函数图像例1.1.(1)用二分法求方程3250x x --=在区间[2,3]上的近似解,取区间中点0 2.5x =,那么下一个有解区间为 . 参考答案:[2,2.5](2)二次函数2y ax bx c =++中,0ac <,则函数的零点个数是 .参考答案:2(3)函数2230()2ln 0x x x f x xx ⎧+-≤=⎨-+>⎩的零点个数为 . 参考答案:22.(1)方程lg 82x x =-的根(,1)x k k ∈+,k ∈Z ,则k = . 参考答案:3(2)若方程lg 62x x =-解为0x ,则满足0k x ≤最大整数k = . 参考答案:2(3)若()()2ln 1f x x x=+-零点在区间()(),1k k k N +∈ 上,则正整数k 的值为 .参考答案:13.(1)若函数()(0,1)x f x a x a a a =-->≠有两个零点, 则实数a 的取值范围是 .参考答案:1a >(2)函数()f x 是定义域为R 的奇函数,且0x >时,()931x f x x =--,则函数()f x 的零点个数是 . 参考答案:3(3)已知函数()2x f x x =+,2()log g x x x =+,3()h x x x =+的零点依次为,,a b c ,则,,a b c 由小到大的顺序是 . 参考答案:acb例2.1.(1)函数|21|x y =-在区间(1,1)k k -+上不单调...,则k 的 取值范围___.参考答案:(1,1)-(2)已知t 为常数,()22f x x x t =--,在区间[]0,3上的 最大值是2,则t =_____.参考答案:12.若函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴 围成的图形的面积是________.参考答案:4分析:由f (x )=x 2+1=1,得x =0;由f (x )=x 2+1=5,得x 2=4,即x =±2.如图所示,根据题意,得⎩⎨⎧ -2≤a ≤0,b =2或⎩⎨⎧a =-2,0≤b ≤2,所以点(a ,b )的运动轨迹与两坐标轴围成的图形是一个边长为2的正方形,其面积为4.3.(1)若方程243x x a -+=有四个不同的解,则实数a 的取值范围为________.参考答案:13a -<<(2)函数()f x 是定义在R 上偶函数,且满足(2)()f x f x +=.当[0,1]x ∈时,()2f x x =.在区间[2,3]-上方程2()0a x a f x +-=恰有四个不相等的实数根,则实数a 的取值范围是_____.参考答案:2253a << 解析 由f (x +2)=f (x )得函数的周期是2.由ax +2a -f (x )=0得f (x )=ax +2a ,设y =f (x ),y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图,要使方程ax +2a -f (x )=0恰有四个不相等的实数根,则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG ,由题意可知,G (1,2),H (3,2),A (-2,0),所以k AH =25,k AG =23,所以25<a <23. (3)若函数2540()220x x x f x x x ⎧++≤⎪=⎨->⎪⎩, 若函数()y f x a x =-恰有4个零点,则实数a 范围为_____. 参考答案:12a <<分析:画出函数f (x )的图象如图所示.函数y =f (x )-a |x |有4个零点,即y 1=a |x |的图象与f (x )的图象有4个交点(根据图象知需a >0).当a =2时, f (x )的图象与y 1=a |x |的图象有3个交点.故a <2.当y =a |x |(x ≤0)与y =|x 2+5x +4|相切时,在整个定义域内,f (x )的图象与y 1=a |x |的图象有5个交点,此时,由⎩⎨⎧y =-ax y =-x 2-5x -4得x 2+(5-a )x +4=0. 由Δ=0得(5-a )2-16=0,解得a =1,或a =9(舍去), 则当1<a <2时,两个函数图象有4个交点.故实数a 的取值范围是1<a <2.(4)定义在R 上的奇函数()f x ,当0x ≥时,0.5l o g (1)01()131x x f x x x +≤<⎧=⎨--≥⎩,则关于x 的 函数()()(01F x f x a a =-<<所有零点之和_____.参考答案:12a -解析 当0≤x <1时,f (x )≤0.由F (x )=f (x )-a =0,画出函数y =f (x )与y =a 的图象如图.函数F (x )=f (x )-a 有5个零点.当-1<x <0时,0<-x <1,所以f (-x )=log 0.5(-x +1)=-log 2(1-x ),即f (x )=log 2(1-x ),-1<x <0.由f (x )=log 2(1-x )=a ,解得x =1-2a ,因为函数f (x )为奇函数,所以函数F (x )=f (x )-a (0<a <1)的所有零点之和为1-2a .(5)已知函数()f x 是定义在R 上的奇函数,当0x ≥时, f (x )=12(|x -a 2|+|x -2a 2|-3a 2). 若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为______.参考答案: [-66,66] 解析 因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ; 当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2; 当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧ -x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. (6)已知定义在R 上的函数()f x 满足:①函数(1)y f x =-的图象关于点(1,0)对称;②对x R ∀∈,33()()44f x f x -=+成立; ③当33(,]24x ∈--时,2()log (31)f x x =-+. 则f (2014)=________.参考答案: -2解析 由①知函数y =f (x )的图象关于原点对称,即函数为奇函数(通过图象变换易推出),由②知函数图象关于直线x =34对称,即f (-x )=f (32+x ),由奇函数可得f (x )=-f (32+x ),据此可推出f (32+x )=-f (3+x ),则有f (x )=f (x +3),故函数以3为周期,因此f (2014)=f (1)=-f (-1)=-log 24=-2.。
一次函数是初中数学的重要内容之一,而分段函数则是其中一种特殊的函数形式。
分段函数是指在一个定义域内,函数表达式在不同区间内不同的情况。
下面是一个初中一次函数分段函数的典例题:
题目:已知一次函数y = kx + b 的图像与x 轴交于点A(2,0),与y 轴交于点B(0,4),且当x >2时,y 的取值范围为1≤y≤9。
(1)求一次函数表达式;
(2)在x 轴上求点P,使△ABP 是等腰三角形,写出点P 的坐标;
(3)在坐标平面内,是否存在点C,使△ABC的面积为8?如果存在,求出点 C 的坐标;如果不存在,请说明理由。
解:(1)由题意可知,一次函数表达式为y = kx + b。
将点A(2,0)和点B(0,4)代入表达式中,可得:
0 = 2k + b
4 = b
解得:k = -2,b = 4
因此,一次函数表达式为y = -2x + 4。
(2)根据题目要求,要在x 轴上求出点P,使△ABP 是等腰三角形。
①若点P 在点 A 的右侧,则线段AP 为腰。
当△ABP 是等腰三角形时,点P 的坐标为(2 + ,0)。
②若点P 在点 B 的左侧,则线段BP 为腰。
当△ABP 是等腰三角形时,点P 的坐标为(0 -,4)。
③若点P 在点A、B 之间,则线段AB 为底。
当△ABP 是等腰三角形时,点P 的坐标为(2 -,0)或(2 + ,0)。
综上所述,满足条件的点P 的坐标为(2 + ,0)或(0 -,4)或(2 -,0)或(2 + ,0)。
(3)在坐标平面内存在点C,使△ABC的面积为8。
此时,C点的坐标为(6,-4)或(-2,8)。
【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。
专题10 分段函数(参数或参数取值范围)主要考查:分段函数求参数(或参数取值范围)问题一、单选题1.已知实数0a >,1a ≠,函数2,1()4ln ,1x a x f x x a x x x ⎧<⎪=⎨++≥⎪⎩在R 上单调递增,则实数a 的取值范围是( ) A .25a ≤≤ B .5a < C .35a <<D .12a <≤【解析】∵函数()f x 在R 上单调递增,∴当1x <时,有1a >;当1≥x 时,()32242420a x axf x x x x x-+'=-+=≥恒成立, 令()324g x x ax =+-,[)1,x ∈+∞,则()26g x x a '=+,∵0a >,∴()0g x '>,即()g x 在[)1,+∞上单调递增,∴()()1242g x g a a ≥=+-=-, 要使当1≥x 时()0f x '≥恒成立,则20a -≥,解得2a ≥.∵函数()f x 在R 上单调递增,∴还需要满足141ln11a a ≤++,即5a ≤, 综上,a 的取值范围是25a ≤≤.故选:A.2.设函数()224,4log ,4x x x f x x x ⎧-+≤=⎨>⎩,若函数()y f x =在区间(],1m m +上单调递减,则实数m 的取值范围是( ) A .[]2,3B .()2,3C .(]2,3D .[)2,3【解析】函数()224,4log ,4x x x f x x x ⎧-+≤=⎨>⎩的图像如图所示,函数()f x 在(],2-∞以及()4,+∞上递增,在[)2,4上递减,故若函数()y f x =在区间(],1m m +上单调递减,需满足2m ≤且14m +≤,即23m ≤≤,故选:A .3.已知函数()221,1()1,1xa x x f x a x ⎧--<⎪=⎨-≥⎪⎩(0a >且1a ≠),对任意12,x x R ∈,当12x x ≠时总有()()12210f x f x x x -<-,则实数a 的取值范围是( )A.B.(C.D.(【解析】因为对任意12,x x R ∈,当12x x ≠时总有()()12210f x f x x x -<-,所以()f x 在R 上单调递增,故有()22201211a a a a ⎧->⎪⎪>⎨⎪--≤-⎪⎩解得1a <<,故选:A4.已知()()[)2,0,1log ,1,2a ax x f x x x ⎧∈⎪=⎨∈⎪⎩,若()1f x =有两解,则a 的取值范围是( ) A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .(]1,2D .()1,2【解析】由题意可知0a >且1a ≠.当12x ≤<时,由()log 1a f x x ==,可得x a =; 当01x <<时,由()21f x ax ==,可得x =由于方程()1f x =有两解,则1201a ≤<⎧⎪⎨<<⎪⎩,解得12a <<. 因此,实数a 的取值范围是()1,2.故选:D.5.在R 上函数()f x 满足()()2f x f x +=,且()2,103,01x a x f x x x +-≤<⎧=⎨-≤<⎩,其中a R ∈,若()()5 4.5f f -=,则a =( )A .2.5B .3.5C .4.5D .5.5【解析】因为()()2f x f x +=,所以函数()f x 的周期为2, 又因为()()512f f a -=-=-,()()4.50.5 2.5f f ==,()()5 4.5f f -=,所以2 2.5a -=,即 4.5a =,故选:C.6.已知函数()232,1,1x x f x x ax x +<⎧=⎨+≥⎩若()()06f f a =,则实数a =( ) A .1 B .2C .4D .8【解析】(0)2f =,2((0))(2)226f f f a a ==+=,解得:1a =,故选:A7.设函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1-,则实数a 的取值范围是( )A .12⎡⎫-+∞⎪⎢⎣⎭,B .12⎛⎫-+∞ ⎪⎝⎭,C .12⎛⎫-∞- ⎪⎝⎭,D .[)1-+∞, 【解析】由于函数()2121log 2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩,,的最小值为1-,当12x ≥时,()211log 122f x f ⎛⎫≥==- ⎪⎝⎭, 当12x ≤时,()112f x a >-+≥-,解得12a ≥-,故选: A . 8.已知函数()()22log 3,31,1x x f x x ax x ⎧+-<≤=⎨->⎩的值域为R ,则实数a 的取值范围是( )A .(]1,0-B .[]1,0-C .()1,-+∞D .[)1,-+∞【解析】当31-<≤x 时,034x <+≤,则()()(]2log 3,2f x x =+∈-∞, 所以,函数()2f x x ax =-在区间()1,+∞上的值域包含()2,+∞,所以,存在()1,x ∈+∞,使得22x ax -≤,即2a x x≥-, 而函数()g x x x2=-在区间()1,+∞上为增函数,()()11g x g ∴>=-,1a ∴≥-.故选:D.二、多选题9.已知函数22,1(),122,2x x f x x x x x +≤⎧⎪=<<⎨⎪≥⎩,若9()4f x =,则x 的可能值是( )A .14B .32C .32-D .98【解析】由22,1(),122,2x x f x x x x x +≤⎧⎪=<<⎨⎪≥⎩,当1x ≤时,9()2=4f x x =+,解得14x =; 当12x <<时,29()=4f x x =,解得32x =;当2x ≥时,9()2=4f x x =,解得98x =(舍).故选:AB.10.已知函数2221,0(),0x x x f x x x ⎧++≤=⎨->⎩,满足(())1f f a =-的a 的值有( )A .0B .1C .1-D .2-【解析】设()t f a =,则()1f t =-,若0t >,则21t -=-,解得1t =或1t =-(舍去),所以()1f a =,当0a >时,21a -=方程无解; 当0a ≤时,2211a a ++=,解得0a =或2a =-,满足条件;若0t ≤时,2211t t ++=-,即2220t t ++=,224240∆=-⨯=-<,方程无解, 故选:AD 11.函数()()2182,1,1xa x a x f x a x ⎧-+-<=⎨≥⎩,满足对任意12,x x R ∈且12x x ≠,都有()()12120f x f x x x -<-成立的充分不必要条件是( ) A .114a ≤≤ B .1132a ≤< C .1338a ≤< D .1132a << 【解析】()()12120f x f x x x -<-成立,即当12x x <时,()()12f x f x >成立;当12x x >时,()()12f x f x <成立,即函数在R 是减函数;当()f x 在定义域上是单调递减函数时,210012182a a a a a-<⎧⎪<<⎨⎪-+-≥⎩,解得1132a ≤<,当114a ≤≤时,1132a ≤<不成立,A 不正确; 对于B ,1132a ≤<是()()12120f x f x x x -<-成立的充要条件,B 不正确; 当1338a ≤<或1132a <<时,1132a ≤<成立,反之不成立,故CD 正确; 故选:CD.12.已知函数()()()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的函数,且满足对于任意的12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则a 的可能取值是( )A .1B .1-C .2-D .3-【解析】由条件对任意的12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则函数单调递增,若函数()()()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的单调递增函数,需满足12015aa a a ⎧-≥⎪⎪<⎨⎪---≤⎪⎩,解得:32a --≤≤.故选:CD三、填空题13.已知函数()()()()()24312121xa x f x x a x x ⎧-≤⎪=⎨+-+>⎪⎩在R 上是增函数,则实数a 的取值范围是_______. 【解析】要使()f x 在R 上是增函数,则431114352a a a a ->⎧⎪-≤⎨⎪-≤-⎩,解得11a -≤<.14.若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______. 【解析】当0x <时,令()0f x =可得:21k x =,当0x >时,令()0f x =可得:21x k x-=, 令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩,若01x <<,()21x g x x -+=,()320x g x x -'=<,()g x 为减函数, 若1≥x ,()21x g x x -=,()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数,若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<,故答案为:10,4⎛⎫ ⎪⎝⎭. 15.已知函数1(2)21,2()2,2x a x a x f x a x --++⎧=⎨>⎩(0a >且1a ≠),若() f x 有最小值,则实数a 的取值范围为_______________________.【解析】f (2)2(2)2143a a a =-++=-, 当2x =时,2122a a -=,若2a >,则当2x 时为增函数,此时无最小值,不合题意;若2a =,当2x 时,()5f x =,当2x >时,12224x x -⨯=>,此时无最小值,不合题意; 若12a <<,当2x 时,()f x 为减函数,此时()f x f (2)43a =-,当2x >时,()f x 为增函数,且此时()2f x a >,要使()f x 有最小值, 则432a a -,即23a ,32a,则312a <; 若01a <<,当2x 时()f x 为减函数,此时()f x f (2)43a =-, 当2x >时,()f x 为减函数,且()0f x >,要使()f x 有最小值,则430a -,即34a,则304a <. 综上所述,312a <或304a <,∴实数a 的取值范围是(0,3](14⋃,3]2.16.已知函数2,2,28()1, 2.2x axx x f x x -⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩若对任意的[)12x ∈+∞,,都存在唯一的()2,2x ∈-∞,满足12()()f x f x =,则实数a 的取值范围是______________.【解析】【法1】当[)2,x ∈+∞时,2()28xf x x =+.因为1()42f x x x =⎛⎫+ ⎪⎝⎭,而44x x +≥=,当且仅当4x x =,即2x =时,等号成立,所以()y f x =的取值范围是108⎛⎤ ⎥⎝⎦,.由题意及函数1()22x af x x -⎛⎫=<⎪⎝⎭,的图像与性质可得 221128a a -≥⎧⎪⎨⎛⎫>⎪⎪⎝⎭⎩或 221128aa -<⎧⎪⎨⎛⎫≥⎪⎪⎝⎭⎩,如上图所示.解得 25a ≤< 或 12a -≤<,所以所求实数a 的取值范围是 [)1,5-.【法2】当[)2,x ∈+∞时,2()28x f x x =+,即1()42f x x x =⎛⎫+ ⎪⎝⎭,因为44x x +≥=,当且仅当4x x =,即2x =时,等号成立,所以()y f x =的取值范围是108⎛⎤⎥⎝⎦,;当(),2x ∈-∞时,(1)若2a ≥,则||11()22x a a xf x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭((),2x ∈-∞),它是增函数,此时()y f x =的取值范围是210,2a -⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭.由题意可得 21128a -⎛⎫> ⎪⎝⎭,解得 5a <,又2a ≥,所以 25a ≤<; (2)若2a <,则1,,2()1,22a xx ax a f x a x --⎧⎛⎫<⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪≤< ⎪⎪⎝⎭⎩.函数()y f x =在(],a -∞上是增函数,此时()y f x =的取值范围是(]0,1;而函数()y f x =在[),2a 上是减函数,此时()y f x =的取值范围是21,12a -⎛⎤⎛⎫ ⎥ ⎪ ⎝⎭⎥⎝⎦.由题意可得 21128a-⎛⎫≥ ⎪⎝⎭,解得1a ≥-,又 2a <,所以 12a -≤<. 综上,所求实数a 的取值范围是[)1,5- . 四、解答题17. 设函数33,().()2,x x x af x a R x x a⎧-=∈⎨->⎩ (1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【解析】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩',当1x <-时,()0f x '>,此时函数为单调递增函数, 当1x >-时,()0f x '<,此时函数为单调递减函数, 故当1x =-时()f x 有最大值为2 .(2)233,()2,x x af x x a⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解, 所以(,1)a ∈-∞-.18.已知函数4,,(),4,x a x a x f x a R a x x ax ⎧-->⎪⎪=∈⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩. (1)当0a =时,求()y f x =的单调区间(只需写出单调区间,不需要证明);(2)若关于x 的方程|()|4(0)f x a a -=>恰有四个不同的实数解,求实数a 的取值范围.【解析】(1)当0a =时,4,0()4,0x x x f x x x x ⎧->⎪⎪=⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩,其图象如图所示:所以()y f x =的单调增区间是()0,∞+,()2,0-;减区间是(),2-∞-;(2)由题意得:42,,(),4,x a x a x f x a a R x x a x ⎧-->⎪⎪-=∈⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩,当44x x ⎛⎫-+= ⎪⎝⎭时,2x =±,当2a ≤时,44x x ⎛⎫-+= ⎪⎝⎭只有一个解,则()424g x x a x=--=±需要有3个解, 而()42g x x a x=--递增,至多有2个解,故不成立; 当2a >时,44x x ⎛⎫-+= ⎪⎝⎭有两个解,则424x a x--=±需要有2个大于a 的解,因为()42g x x a x=--在(),a +∞递增, 所以()()4g x g a a a >=--,而2a >,()44g a a a=--<-,所以()4,g x a a ⎛⎫∈--+∞ ⎪⎝⎭,所以424x a x --=±有2个解,所以实数a 的取值范围是()2,+∞19.已知函数()21,0,0x ax x f x e x -⎧+<=⎨≥⎩且()()013f f +-=.(1)求实数a 的值;(2)若对任意的[]1,1x ∈-,不等式()()()()2121bfb x b f x +-+≥恒成立,求正数b 的取值范围.【解析】(1)()21,0,0x ax x f x e x -⎧+<=⎨≥⎩,()()01113f f a ∴+-=++=,所以1a =;(2)()()()()2222bbx bx f xee f bx --===,函数()f x 在(),0-∞上单调递减,在区间[)0,+∞上单调递减, 因为2001e -+=,所以,函数()f x 在R 上连续,所以,函数()f x 在R 上为减函数,()()()()()22121bfb x b f x f bx +-+≥=等价于()2121b x b bx +-+≤,即当0b >时,()21210bx b x b -++-≥在[]1,1x ∈-上恒成立,可得()221b x x x -+≥+.22172024x x x ⎛⎫-+=-+> ⎪⎝⎭,所以,212x b x x +≥-+. 当1x =-时,2102x b x x +>=-+成立; 当11x -<≤时,令(]10,2t x =+∈,可得1x t =-,则()()22211142341123x t t x x t t t t t t +===≤=-+-+---++-, 当且仅当2t =时,即当1x =时,等号成立. 综上所述,函数212x y x x +-=+在区间[]1,1-上的最大值为1,1b ∴≥. 因此,实数b 的取值范围是[)1,+∞.20.已知函数()()lg ,02,0x x x f x e x ⎧-<⎪=⎨-≥⎪⎩.(1)若()1f a =,求a 的值;(2)若关于x 的方程()()2210f mf x x m +++=恰有5个实数根,求m 的取值范围.【解析】(1)若0a <,则()()lg 1=-=f a a ,解得10a =-;若0a ≥,则()21af a e =-=,解得0a =或ln3. 故a 的值为0或10-或ln3.(2)由题可知()()lg ,02,0ln 22,ln 2x x x x f x e x e x ⎧-<⎪=-+≤<⎨⎪-≥⎩, 作出()f x 的大致图象如下:令()t f x =,由图像可得,当01t <≤时,方程()t f x =有三个不同实根;当1t >或0t =时,方程()t f x =有两个不同实根;当0t <时,方程()t f x =有一个实根;因此关于x 的方程()()2210f mf x x m +++=恰有5个实数根等价于关于t 的方程2210+++=t mt m 有2个不相等的实数根1t ,2t ,不妨设12t t >,则12101t t >⎧⎨<≤⎩或21001t t =⎧⎨<≤⎩,令()221=+++h t t mt m ,若11t >,201t <<,则()()00100h h ⎧>⎪<⎨⎪∆>⎩,即2210320840m m m m +>⎧⎪+<⎨⎪-->⎩,不等式无解;若11t >,21t =,则()()00100h h ⎧>⎪=⎨⎪∆>⎩,即2210320840m m m m +>⎧⎪+=⎨⎪-->⎩,不等式无解;若20t =,101t <≤,则()()00100h h ⎧=⎪≥⎨⎪∆>⎩,即2210320840m m m m +=⎧⎪+≥⎨⎪-->⎩,解得12m =-.故m 的取值范围是12⎧⎫-⎨⎬⎩⎭.21.已知函数2ln()1,1,()1, 1.x x f x x ax x -+<-⎧=⎨-+--⎩(1)判断()f x 在(,1)-∞-上的单调性(不需要证明);(2)若()f x 在(,)-∞+∞上为单调函数,求a 的取值范围.【解析】(1)y x =-在R 上为减函数,ln y x =在(0,)+∞为增函数,ln()y x ∴=-在(,0)-∞上为减函数,()f x ∴在(,1)-∞-上为减函数;(2)由(1)知,()f x 在(,1)-∞-上为减函数,则()f x 在[1,)-+∞上也为减函数, 所以12a -,且2(1)1ln11a ----+,解得32a --.22.已知函数()2,0,10,x a b x f x x x ⎧+≥=⎨--<⎩,,其中0a >,1a ≠.(1)若()f x 在(),-∞+∞上是单调函数,求实数a ,b 的取值范围;(2)当a =2时,函数()f x 在(),-∞+∞上只有一个零点求实数b 的取值范围.【解析】(1)∵()f x 在(),-∞+∞上是单调函数,且()f x 在,0上递增,∴()f x 在[0,+∞)上也是递增的,∴1a >,且()011f b =+≥-,解得2b ≥-. (2)∵0x <时,()1f x <-,∴()f x 在(-∞,0)上无零点, ,当0x ≥时,()2x f x b =+只有一个零点.∵()f x 在[0,+∞)上递增,且()1)f x b ∈++∞[,,∴()010f b =+≤, ∴实数b 的取值范围是1]b ∈-∞-(,.。
1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x ); ②y =f (x )――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )―――――――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变 0<a <1,横坐标伸长为原来的1a倍,纵坐标不变②y =f (x )――――――――――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × )1.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是________.(填序号)答案 ④解析 因为函数f (x )是奇函数,所以排除①、②.f ′(x )=2-4cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2,令f ′(x )=2-4cos x =0⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2,得x =±π3,所以④正确.2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为__________________________. 答案 f (x )=e-x -1解析 与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1. 3.为了得到函数y =4×(12)x 的图象,可以把函数y =(12)x 的图象向________平移________个答案 右 24.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________. 答案 (0,+∞) 解析 由题意a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有两个实根,则实数a 的范围是________. 答案 (0,1] 解析当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1.题型一 作函数的图象例1 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1;(3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图3.引申探究作函数y =|x 2-2x -1|的图象.解 y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥1+2或x ≤1-2),-x 2+2x +1 (1-2<x <1+2),如下图思维升华 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx(m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3.解 (1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时, y =-(x -2)(x +1)=-x 2+x +2 =-(x -12)2+94.∴y =⎩⎨⎧(x -12)2-94,x ≥2,-(x -12)2+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x 向左平移3个单位,再向上平移1个单位得到,如下图所示.题型二 识图与辨图例2 (1)(2015·课标全国Ⅱ改编)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为________(填序号).(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为________(填序号).答案 (1)② (2)②解析 (1)当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,PB =OB tan ∠POB =tan x ,在Rt △P AB 中, P A =AB 2+PB 2=4+tan 2x ,则f (x )=P A +PB =4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除①和③;当点P 与点C 重合,即x =π4时,由上得f ⎝⎛⎭⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝⎛⎭⎫π2=P A+PB =2+2=22,知f ⎝⎛⎭⎫π2<f ⎝⎛⎭⎫π4,故又可排除④.综上,故②正确. (2)方法一 由y =f (x )的图象知,f (x )=⎩⎨⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x ≤1),x -2(1<x ≤2).图象应为②.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各图,可知②正确.思维升华 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.(1)(2015·浙江 改编)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为______.(填序号)(2)现有四个函数:①y =x sin x ;②y =x cos x ;③y =x |cos x |;④y =x ·2x 的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号正确的排列应为________.答案 (1)④ (2)①④②③解析 (1)∵f (x )=(x -1x)cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除①,②;当x =π时,f (x )=1π-π<0,排除③.故④正确.(2)由于函数y =x sin x 是偶函数,由图象知,函数①对应第一个图象;函数y =x cos x 是奇函数,且当x =π时,y =-π<0,故函数②对应第三个图象;函数y =x |cos x |为奇函数,故函数③与第四个图象对应;函数y =x ·2x 为非奇非偶函数,与第二个图象对应.综上可知,正确排序为①④②③.题型三 函数图象的应用例3 (1)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 015x ,x >1.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c的取值范围是____________. 答案 (1)-12(2)(2,2 016)解析 (1)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.(2)作出函数的图象,直线y =m 交函数图象如图,不妨设a <b <c ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 015x =1,解得x =2 015.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 015,因此可得2<a +b +c <2 016,即a +b +c ∈(2,2 016).思维升华 (1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应法则.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.(1)设定义在[-1,7]上的函数y =f (x )的图象如图所示,则关于函数y =1f (x )的单调区间表述正确的是________.①在[-1,1]上单调递增;②在(0,1]上单调递减,在[1,3)上单调递增; ③在[5,7]上单调递增; ④在[3,5]上单调递增.(2)若关于x 的不等式2-x 2>|x -a |至少有一个负数解,则实数a 的取值范围是________. 答案 (1)② (2)⎝⎛⎭⎫-94,2 解析 (1)由题图可知,f (0)=f (3)=f (6)=0,所以函数y =1f (x )在x =0,x =3,x =6处无定义,故排除①、③、④,故②正确.(2)在同一坐标系中画出函数f (x )=2-x 2,g (x )=|x -a |的图象,如图所示.若a ≤0,则其临界情况为折线g (x )=|x -a |与抛物线f (x )=2-x 2相切.由2-x 2=x -a 可得x 2+x -a -2=0,由Δ=1+4·(a +2)=0,解得a =-94;若a >0,则其临界情况为两函数图象的交点为(0,2),此时a =2.结合图象可知,实数a 的取值范围是⎝⎛⎭⎫-94,2.3.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例 函数f (x )=2x +sin x 的部分图象可能是________.思维点拨 根据函数的定义域、值域、单调性、奇偶性和特征点确定函数图象. 解析 方法一 ∵f (-x )=-2x -sin x =-f (x ), ∴f (x )为奇函数,排除②、③,又0<x <π2时,f (x )>0,排除④,故①正确.方法二 ∵f ′(x )=2+cos x >0, ∴f (x )为增函数,故①正确. 答案 ①温馨提醒 (1)确定函数的图象,要从函数的性质出发,利用数形结合的思想. (2)对于给出图象的选择性题目,可以结合函数的某一性质或特殊点进行排除. 二、函数图象的变换问题典例 若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为________.(填序号)思维点拨 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象. 解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知③正确. 答案 ③温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别. (2)图象变换也可利用特征点的变换进行确定. 三、函数图象的应用典例 (1)已知函数f (x )=x |x |-2x ,则下列有关f (x )的性质正确的是________. ①f (x )是偶函数,递增区间是(0,+∞); ②f (x )是偶函数,递减区间是(-∞,1); ③f (x )是奇函数,递减区间是(-1,1); ④f (x )是奇函数,递增区间是(-∞,0).(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.思维点拨 (1)画出函数f (x )的图象观察.(2)利用函数f (x ),g (x )图象的位置确定a 的范围. 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察得到,f (x )为奇函数,递减区间是(-1,1).(2)如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞). 答案 (1)③ (2)[-1,+∞)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思维为形象思维,解释数学问题的本质.(2)利用函数图象也可以确定不等式解的情况,解题时可对方程或不等式适当变形,选择合适的函数进行作图.[方法与技巧]1.列表描点法是作函数图象的辅助手段,要作函数图象首先要明确函数图象的位置和形状:(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等;(2)可通过函数图象的变换如平移变换、对称变换、伸缩变换等.2.合理处理识图题与用图题(1)识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.(2)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.常用函数图象研究含参数的方程或不等式解集的情况.[失误与防范]1.函数图象平移的方向和大小:函数图象的每次变换都针对自变量“x”而言,如从f(-2x)的图象到f(-2x+1)的图象是向右平移1个单位.22.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.A组专项基础训练(时间:40分钟)1.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x -1,x ≥0的图象大致是________.答案 ②解析 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x 的图象在y 轴右侧的部分向下平移1个单位即可.故②正确.2.为了得到函数y =2x -3-1的图象,只需把函数y =2x 的图象上所有的点向______平移______个单位长度,再向______平移______个单位长度. 答案 右 3 下 1解析 y =2x ――――――→向右平移3个单位长度y =2x -3――――――――――→向下平移1个单位长度y =2x -3-1.3.已知f (x )=⎩⎨⎧-2x (-1≤x ≤0),x (0<x ≤1),则下列函数的图象正确的为________.(填序号)答案 ①②③解析 先在坐标平面内画出函数y =f (x )的图象,再将函数y =f (x )的图象向右平移1个单位长度即可得到y =f (x -1)的图象,因此①正确;作函数y =f (x )的图象关于y 轴的对称图形,即可得到y =f (-x )的图象,因此②正确; y =f (x )的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,③正确;y =f (|x |)的定义域是[-1,1],且是一个偶函数,当0<x ≤1时,y =f (|x |)=x ,相应这部分图象不是一条线段,因此④不正确. 综上所述,①②③正确.4.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 (12,1)解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为(12,1).5.(2015·北京改编)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是__________. 答案 {x |-1<x ≤1}解析 令g (x )=y =log 2(x +1),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧ x +y =2,y =log 2(x +1), 得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 6.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时, 函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为__________________________________. 答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值, f (4)=6.8.设f (x )=|lg(x -1)|,若0<a <b ,且f (a )=f (b ),则ab 的取值范围是________. 答案 (4,+∞)解析 由于函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ),所以ab >4. 9.已知函数f (x )=x1+x .(1)画出f (x )的草图; (2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到的,图象如图所示. (2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞). 10.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3),作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1, ∴M ={m |0<m <1}.B组专项能力提升(时间:15分钟)11.函数y=f(x)的图象如图所示,则函数y=log12f(x)的图象大致是________.答案③解析由函数y=f(x)的图象知,当x∈(0,2)时,f(x)≥1,所以log12f(x)≤0.又函数f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以y=log12f(x)在(0,1)上是增函数,在(1,2)上是减函数.结合各图象知,③正确.12.(2015·安徽改编)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是________.①a>0,b>0,c<0;②a<0,b>0,c>0;③a<0,b>0,c<0;④a<0,b<0,c<0.答案③解析函数定义域为{x|x≠-c},结合图象知-c>0,∴c<0.令x=0,得f(0)=bc2,又由图象知f(0)>0,∴b>0.令f(x)=0,得x=-ba ,结合图象知-ba>0,∴a<0.13.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为____________________. 答案 (-∞,0]∪(1,2]解析 y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为(-∞,0]∪(1,2].14.已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 答案 (0,1)解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,故k 的取值范围为(0,1).15.给出下列命题:①在区间(0,+∞)上,函数y =x -1,y =x 12,y =(x -1)2,y =x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x -1)的图象关于点(1,0)对称;④若函数f (x )=3x -2x -3,则方程f (x )=0有两个实数根,其中正确的命题是________. 答案 ②③④解析 对于①,在区间(0,+∞)上,只有y =x 12,y =x 3是增函数,所以①错误.对于②,由log m 3<log n 3<0,可得1log 3m <1log 3n<0,即log 3n <log 3m <0,所以0<n <m <1,所以②正确.易知③正确.对于④,方程f (x )=0即为3x -2x -3=0,变形得3x =2x +3,令y 1=3x ,y 2=2x+3,在同一坐标系中作出这两个函数的图象,如图.由图象可知,两个函数图象有两个交点,所以④正确.。
2020中考复习——分段函数专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示图象描述了他上学的情景,下列说法中错误的是().A. 修车时间为13minB. 自行车发生故障时离家距离为1000mC. 学校离家的距离为2000mD. 到达学校时共用时间20min2.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()A. B.C. D.3.小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.右图描述了他上学的情景,下列说法中正确的个数为()(1)学校离家的距离为2000米(2)到达学校时共用时间20分钟(3)修车时间为15分钟(4)自行车发生故障时离家距离为1000米A. 4个B. 3个C. 2个D. 1个.他估计步行不能准时到达,于是改4.一名考生步行前往考场,10分钟走了总路程的14乘出租车前往考场.这名考生的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了()A. 26分钟B. 24分钟C. 20分钟D. 16分钟5.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图所示,下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船出发3.9小时后与快艇相遇D. 快艇比轮船早到2小时6.下图①是某一数值转换流程图,图②是反映图①中y与x函数关系的图象:根据如上的流程图,若想输出y=9,则输入x的值为()A. 4B. 3或4C. 4或8D. 3或4或87. 定义新运算:则函数y =3@x 的图象大致是( )A. B.C. D.8. 已知函数y ={x 2−x (x ≥0)−x 2−x (x <0),当a ≤x ≤b 时,−14≤y ≤2,则b −a 的最大值为( )A. 52B. 52+√22C. 32D. 2二、填空题9. 根据图中的程序,当输入x =3时,输出的结果y =______.10. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法: ①兔子和乌龟同时从起点出发; ②“龟兔再次赛跑”的路程为1000米; ③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是______.(把你认为正确说法的序号都填上)11.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,下列结论:①若通话时间少于120分,则A方案比B方案便宜20元;②若通话时间超过200分,则B方案比A方案便宜12元;③若通讯费用为60元,则B方案比A方案的通话时间多;④若两种方案通讯费用相差10元,则通话时间是145分或185分.其中正确结论的序号是.12.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),行驶的时间为x(ℎ),两车之间的距离为s(km),y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示,则当x=________时,两车相距60km.13.已知y1=x+1,y2=−2x+4,对任意一个x,取y1,y2中的较大的值为m,则m的最小值是______ .14.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物的总额,规定相应的优惠方法:①若不超过500元,则不给予优惠;②若超过500元,但不超过800元,则按购物总额给予8折优惠;③若超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元.若合并付款,则她们总共只需付款_______________元.15.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则小明这次行程的平均速度是______.三、解答题16.某星期天早晨,小华从家出发步行前往体育馆锻炼,途中在报亭看了一会儿报,如图所示是小华从家到体育馆这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)体育馆离小华家_______米,从出发到体育馆,小华共用了______分钟;(2)小华在报亭看报用了多少分钟?(3)小华看完报后到体育馆的平均速度是多少?17.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;(2)本次去舅舅家的行程中,小红一共行驶了______米;一共用了______分钟.18.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m,则应缴费______ 元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?19.如图是小明的爸爸骑一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)图象表示了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)小明的爸爸从出发到最后停止共经过了多少分钟?离家最远的距离是多少千米?(3)摩托车在哪一段时间内速度最快?最快速度是多少千米/小时?20.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示。
分段函数、图像测试题
1. 下列命题中,错误的是( )
A. 抛物线
y x =--21不与x 轴相交 B. 函数y x x =-+23的图象关于直线x =3
8对称
C. 抛物线y x y x =-=-12112122
与()形状相同,位置不同
D. 抛物线y x x =+232经过原点
2. 已知函数y ax b =+的图象经过第一、二、三象限,那么y ax bx =++2
1的图象大致为( )
3.. 二次函数
y ax bx c =++2的图象如图所示,下列结论:①a b c ++<0;②a b c -+>0;③abc >0;④b a =2;⑤b ac 240-<。
其中正确结论的个数是( )
A. 4
B. 3
C. 2
D. 5
4.幂函数y=x m ,y=x n ,y=x p 的图象如下图所示,则 [ ]
A .m >n >p
B .m >p >n
C .n >p >m
D .p >n >m
5.函数2
y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )
6、函数()f x 为定义域在R 上是偶函数,且()f x 在[)0,+∞上为递增的,则
(2),(),(3)f f f π--的大小顺序为 ( )
A 、()(3)(2)f f f π->>-
B 、()(2)(3)f f f π->->
C 、()(3)(2)f f f π-<<-
D 、()(2)(3)f f f π-<-<
7.2(0)a ax a y a x
+=≠函数y=与在同一坐标系中的图象可能是( )
8、若函数()f x =
3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3) 9.
10.若函数21(2)()23(2)x x f x x x x +≥⎧=⎨-+<⎩
,则6=)(x f 时x 的值为 、 11.设函数()(1)()x a x f x x
++=为奇函数,则_______________a = 12.已知幂函数226(57)m y m m x
-=-+在区间(0,)+∞上单调递增,则实数m 的值为 . 13.函数f (x )=2x 2-8|x |的单调减区间是___________.
14.
15.已知幂函数y=f(x)图象过点1(,
22
(1)、求函数y=f(x)解析式; (2)、记()()g x f x x =+,判断()g x 在(0,)+∞上的单调性,并用单调性定义证明。
16.。