第九章半导体异质结结构.ppt
- 格式:ppt
- 大小:5.03 MB
- 文档页数:92
第九章半导体异质结结构第九章介绍了半导体异质结结构。
半导体异质结由两种或多种不同的半导体材料组成,具有不同的能带结构和能带差。
半导体异质结具有许多特殊的物理性质和应用。
在异质结中,由于不同材料的特性差异,电子在结界面上会积聚形成电子气,形成能带弯曲现象。
这种能带弯曲会产生一些二维电子气体性质,如高电子迁移率、量子阱、量子井和量子点等。
半导体异质结结构常用的材料有Si/GaAs、GaAs/AlAs等。
这些异质结结构的制备都需要使用分子束外延(MBE)、金属有机气相沉积(MOCVD)等高精度的制备技术。
半导体异质结结构的性质和应用包括以下几个方面:1.能带偏移和势垒形成:两种不同半导体材料的相邻能带会发生偏移,从而形成一个势垒。
这个势垒可以用来限制电子和空穴的运动方向,实现电子和空穴的分离和控制,从而用于制备二极管、太阳能电池等器件。
2.量子阱和量子井:通过在半导体异质结中形成非常薄的势垒层,可以限制电子和空穴在其中一方向上的运动,形成二维或零维电子气体。
这些二维和零维电子气体被称为量子阱和量子井,具有特殊的量子效应,如量子谐振子,可以制备激光器、光电器件等。
3.量子点:在半导体异质结界面上形成三维限制的势垒结构,可以限制电子和空穴在三个方向上的运动,形成零维的量子点结构。
量子点具有量子限制效应,能够实现对电子和光的精确控制,广泛应用于激光器、光电转换器等领域。
4.型谱学研究:通过在半导体异质结中引入不同材料,可以实现特定能带结构的调控。
通过对其吸收光谱、光致发光谱、拉曼散射谱进行研究,可以了解材料的能带结构和物理性质,为半导体器件的制备和应用提供基础。
半导体异质结结构在工业和科研领域有着广泛的应用。
例如,激光器是典型的半导体异质结结构应用。
利用半导体异质结导致的能带差,可以在激光器中实现可控的电子和空穴注入和互相复合,从而产生激光输出。
激光器广泛应用于通信、医疗、显示和材料加工等领域。
此外,半导体异质结结构还在半导体光电转换器件中得到应用。