9第九章 半导体异质结构
- 格式:pdf
- 大小:2.98 MB
- 文档页数:61
第9章半导体异质结构第6章讨论的是由同一种半导体材料构成的p-n结,结两侧禁带宽度相同,通常称之为同质结。
本章介绍异质结,即两种不同半导体单晶材料的结合。
虽然早在1951年就已经提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺水平的限制,一直没有实际制成。
直到气相外延生长技术开发成功,异质结才在1960年得以实现。
1969年发表了第一个用异质结制成激光二极管的报告之后,半导体异质结的研究和应用才日益广泛起来。
§9.1 异质结及其能带图一、半导体异质结异质结是由两种不同的半导体单晶材料结合而成的,在结合部保持晶格的连续性,因而这两种材料至少要在结合面上具有相近的晶格结构。
根据这两种半导体单晶材料的导电类型,异质结分为以下两类:(1)反型异质结反型异质结是指由导电类型相反的两种不同的半导体单晶材料所形成的异质结。
例如由p型Ge与n型Si构成的结即为反型异质结,并记为pn-Ge/Si或记为p-Ge/n-Si。
如果异质结由n型Ge 与p型Si形成,则记为np-Ge/Si或记为n-Ge/p-Si。
已经研究过许多反型异质结,如pn-Ge/Si;pn-Si/GaAs;pn-Si/ZnS;pn-GaAs/GaP;np-Ge/GaAs;np-Si/GaP等等。
(2)同型异质结同型异质结是指由导电类型相同的两种不同的半导体单晶材料所形成的异质结。
例如。
在以上所用的符号中,一般都是把禁带宽度较小的材料名称写在前面。
二、异质结的能带结构异质结的能带结构取决于形成异质结的两种半导体的电子亲和能、禁带宽度、导电类型、掺杂浓度和界面态等多种因素,因此不能像同质结那样直接从费米能级推断其能带结构的特征。
1、理想异质结的能带图界面态使异质结的能带结构有一定的不确定性,但一个良好的异质结应有较低的界面态密度,因此在讨论异质结的能带图时先不考虑界面态的影响。
(1)突变反型异质结能带图图9-1(a)表示禁带宽度分别为E g1和E g2的p型半导体和n型半导体在形成异质pn结前的热平衡能带图,E g1 E g2。
第九章异质结9.1 理论概要与重点分析(1)由两种不同的半导体材料形成的结,称为异质结。
异质结是同质结的引申和发展,而同质结是异质结的特殊情况。
异质结分为同型异质结(如n-nGe—GaAs,p—pGe-Si,等)和反型异质结(如p—nGe—GaAs,p—nGe—Si等)。
另外,根据结处两种材料原子过渡的陡、缓情况,可分为突变和缓变异质结。
通常形成异质结的两种材料沿界面有相近的结构,因而界面仍保持晶格连续。
(2)研究异质结的特性时,异质结的能带图起着重要作用。
在不考虑界面态的情况下,任何异质结能带图都取决于两侧半导体材料的电子亲和能、禁带宽度、功函数(随掺杂类型及浓度而异)三个因素。
然而平衡异质结内具有统一费米能级仍然是画能带图的重要依据。
由于禁带宽度和电子亲和能不同,两种半导体的Ec 、Ev,在交界面处出现不连续而发生突变,其突变量:由于晶格失配,必然在界面处存在悬挂键而引入界面态,晶格失配越严重,悬挂键密度越高,界面态密度越大。
不同晶面相接触形成异质结其悬挂键密度是不同的,经推算,几个主要面形成异质结后的悬挂键密度△Ns分别为如果界面态的密度很大(1013/cm2以上),表面处的费米能级在表面价带以上禁带宽度的1/3处。
对n型半导体,界面态起受主作用,界面态接受体内电子,界面带负电,半导体表面带正电,使能带上弯。
对p型半导体,界面态起施主作用,界面态向体内施放电子,界面带正电,半导体表面带负电,使能带下弯。
总之高界面态的存在,使异质结的能带图与理想情况相比有较大的变化。
(4)因为异质结在结处能带不连续,存在势垒尖峰和势阱,而且还有不同程度的界面态和缺陷,使异质结的电流传输问题比同质结要复杂得多。
不存在一种在多数情况下起主导作用的电流传输机制,根据结的实际情况发展了多种电流传输模型。
这些模型是:扩散模型、发射模型、发射复合模型、隧道一复合模型等。
分别或联合使用这些模型计算的结果,可使不同异质结的伏安特性有较好的解释。
第9章半导体异质结构第6章讨论的是由同一种半导体材料构成的p-n结,结两侧禁带宽度相同,通常称之为同质结。
本章介绍异质结,即两种不同半导体单晶材料的结合。
虽然早在1951年就已经提出了异质结的概念,并进行了一定的理论分析工作,但是由于工艺水平的限制,一直没有实际制成。
直到气相外延生长技术开发成功,异质结才在1960年得以实现。
1969年发表了第一个用异质结制成激光二极管的报告之后,半导体异质结的研究和应用才日益广泛起来。
§9.1 异质结及其能带图一、半导体异质结异质结是由两种不同的半导体单晶材料结合而成的,在结合部保持晶格的连续性,因而这两种材料至少要在结合面上具有相近的晶格结构。
根据这两种半导体单晶材料的导电类型,异质结分为以下两类:(1)反型异质结反型异质结是指由导电类型相反的两种不同的半导体单晶材料所形成的异质结。
例如由p型Ge与n型Si构成的结即为反型异质结,并记为pn-Ge/Si或记为p-Ge/n-Si。
如果异质结由n型Ge 与p型Si形成,则记为np-Ge/Si或记为n-Ge/p-Si。
已经研究过许多反型异质结,如pn-Ge/Si;pn-Si/GaAs;pn-Si/ZnS;pn-GaAs/GaP;np-Ge/GaAs;np-Si/GaP等等。
(2)同型异质结同型异质结是指由导电类型相同的两种不同的半导体单晶材料所形成的异质结。
例如。
在以上所用的符号中,一般都是把禁带宽度较小的材料名称写在前面。
二、异质结的能带结构异质结的能带结构取决于形成异质结的两种半导体的电子亲和能、禁带宽度、导电类型、掺杂浓度和界面态等多种因素,因此不能像同质结那样直接从费米能级推断其能带结构的特征。
1、理想异质结的能带图界面态使异质结的能带结构有一定的不确定性,但一个良好的异质结应有较低的界面态密度,因此在讨论异质结的能带图时先不考虑界面态的影响。
(1)突变反型异质结能带图图9-1(a)表示禁带宽度分别为E g1和E g2的p型半导体和n型半导体在形成异质pn结前的热平衡能带图,E g1 E g2。
第九章半导体异质结结构第九章介绍了半导体异质结结构。
半导体异质结由两种或多种不同的半导体材料组成,具有不同的能带结构和能带差。
半导体异质结具有许多特殊的物理性质和应用。
在异质结中,由于不同材料的特性差异,电子在结界面上会积聚形成电子气,形成能带弯曲现象。
这种能带弯曲会产生一些二维电子气体性质,如高电子迁移率、量子阱、量子井和量子点等。
半导体异质结结构常用的材料有Si/GaAs、GaAs/AlAs等。
这些异质结结构的制备都需要使用分子束外延(MBE)、金属有机气相沉积(MOCVD)等高精度的制备技术。
半导体异质结结构的性质和应用包括以下几个方面:1.能带偏移和势垒形成:两种不同半导体材料的相邻能带会发生偏移,从而形成一个势垒。
这个势垒可以用来限制电子和空穴的运动方向,实现电子和空穴的分离和控制,从而用于制备二极管、太阳能电池等器件。
2.量子阱和量子井:通过在半导体异质结中形成非常薄的势垒层,可以限制电子和空穴在其中一方向上的运动,形成二维或零维电子气体。
这些二维和零维电子气体被称为量子阱和量子井,具有特殊的量子效应,如量子谐振子,可以制备激光器、光电器件等。
3.量子点:在半导体异质结界面上形成三维限制的势垒结构,可以限制电子和空穴在三个方向上的运动,形成零维的量子点结构。
量子点具有量子限制效应,能够实现对电子和光的精确控制,广泛应用于激光器、光电转换器等领域。
4.型谱学研究:通过在半导体异质结中引入不同材料,可以实现特定能带结构的调控。
通过对其吸收光谱、光致发光谱、拉曼散射谱进行研究,可以了解材料的能带结构和物理性质,为半导体器件的制备和应用提供基础。
半导体异质结结构在工业和科研领域有着广泛的应用。
例如,激光器是典型的半导体异质结结构应用。
利用半导体异质结导致的能带差,可以在激光器中实现可控的电子和空穴注入和互相复合,从而产生激光输出。
激光器广泛应用于通信、医疗、显示和材料加工等领域。
此外,半导体异质结结构还在半导体光电转换器件中得到应用。