金属半导体和半导体异质结
- 格式:ppt
- 大小:3.33 MB
- 文档页数:11
一、肖特基势垒二极管欧姆接触:通过金属-半导体的接触实现的连接。
接触电阻很低。
金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。
之间形成势垒为肖特基势垒。
在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。
影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。
金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。
附图:电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。
附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。
肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。
2.开关特性肖特基二极管更好。
应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。
从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。
二、金属-半导体的欧姆接触附金属分别与N型p型半导体接触的能带示意图三、异质结:两种不同的半导体形成一个结小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。
2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。
10双极型晶体管双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。
之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。
一、工作原理附npn型和pnp型的结构图发射区掺杂浓度最高,集电区掺杂浓度最低附常规npn截面图造成实际结构复杂的原因是:1.各端点引线要做在表面上,为了降低半导体的电阻,必须要有重掺杂的N+型掩埋层。
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理名词解释1.有效质量:a 它概括了半导体内部势场的作用,使得在解决导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用 b 可以由实验测定,因而可以很方便的解决电子的运动规律2.空穴:定义价带中空着的状态看成是带正电荷的粒子,称为空穴意义a 把价带中大量电子对电流的贡献仅用少量的空穴表达出来b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件3.理想半导体(理想与非理想的区别):a 原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动b 半导体材料并不是纯净的,而是含有各种杂质即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子 c 实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷4.杂质补偿:在半导体中,施主和受主杂质之间有相互抵消的作用通常称为杂质的补偿作用5.深能级杂质:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质6.简并半导体:当E-E F》k o T不满足时,即f(E)《1,[1-f(E)]《1的条件不成立时,就必须考虑泡利不相容原理的作用,这时不能再应用玻耳兹曼分布函数,而必须用费米分布函数来分析导带中的电子及价带中的空穴的统计分布问题。
这种情况称为载流子的简并化,发生载流子简并化的半导体被称为简并半导体(当杂质浓度超过一定数量后,载流子开始简并化的现象称为重掺杂,这种半导体即称为简并半导体7.热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。
温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度T e来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子8.砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。
半导体异质结
半导体异质结是半导体物理和材料学中最基础的概念之一,它指的是不同半导体材料之间的界面,物理上的结构是彼此分离的。
半导体异质结是由不同结构或物理本征的半导体分子构成的。
这样的结构可以产生半导体物质的能带变化,从而影响传输特性。
半导体异质结是由一方阳离子和另一方阴离子电荷配对构成的,这样就可以形成一个稳定的电势阻挡,使得流动的电子和空穴在其中穿梭,电流才能传递。
另一方面,由于空穴和电子的转移率不同,半导体异质结可以用来控制光电子器件的传输特性,例如在光子晶体中的发射率。
此外,半导体异质结还可以用于降低半导体器件,降低输出功耗,提高效率。
光电化学的定义、光源以及涉及的光电材料、异质结的分类1.引言1.1 概述概述是文章的开篇部分,用于介绍光电化学的背景和意义。
光电化学是光与电化学的交叉学科,研究光和电化学相互作用的过程和机制。
它涉及到光源、光电材料以及异质结的分类等方面。
通过对光电化学的研究,可以揭示光与电化学之间的相互关系,拓展光电器件的应用领域,推动光电技术的发展。
光电化学作为一门独特的学科,具有广阔的应用前景。
在能源领域,光电化学可以应用于光电转换器件的研究,如太阳能电池和光电催化等,有助于实现可再生能源的利用和环境友好能源的开发。
在环境保护方面,光电化学可以用于污水处理、空气净化和废物处理等领域,利用光电材料和光源的特性来实现高效、清洁的环境治理。
此外,光电化学还在传感器、光催化剂、光电存储器件等领域有着广泛的应用。
本文将重点介绍光电化学的定义、光源以及涉及的光电材料、异质结的分类。
首先,将详细解释光电化学的概念和研究内容,为读者提供一个全面的认识。
其次,将介绍常见的光源种类及其特性,并探讨其在光电化学研究中的应用。
接着,将介绍光电材料在光电化学中的作用和分类,包括光电催化剂、光电转换材料等。
最后,将探讨异质结在光电化学中的重要性以及常见的分类方法。
通过本文的阅读,读者将对光电化学有一个系统性的了解,理解光电化学的定义、光源、光电材料以及异质结的分类等方面的内容。
同时,读者也可以更深入地了解光电化学在能源领域、环境保护以及其他应用领域的潜力和前景。
1.2 文章结构文章结构是指文章的整体组织架构,它决定了文章内容的逻辑顺序和重点安排。
本文按照以下结构进行组织和叙述:1. 引言在引言部分,将给出光电化学的概述,简要介绍光电化学的基本概念和研究领域。
同时,说明本文的结构和目的,为读者提供清晰的阅读框架。
2. 正文2.1 光电化学的定义在这一部分,将对光电化学的定义进行详细阐述。
介绍光电化学是研究光与物质相互作用引起的电化学现象的学科。
第九章半导体异质结结构第九章介绍了半导体异质结结构。
半导体异质结由两种或多种不同的半导体材料组成,具有不同的能带结构和能带差。
半导体异质结具有许多特殊的物理性质和应用。
在异质结中,由于不同材料的特性差异,电子在结界面上会积聚形成电子气,形成能带弯曲现象。
这种能带弯曲会产生一些二维电子气体性质,如高电子迁移率、量子阱、量子井和量子点等。
半导体异质结结构常用的材料有Si/GaAs、GaAs/AlAs等。
这些异质结结构的制备都需要使用分子束外延(MBE)、金属有机气相沉积(MOCVD)等高精度的制备技术。
半导体异质结结构的性质和应用包括以下几个方面:1.能带偏移和势垒形成:两种不同半导体材料的相邻能带会发生偏移,从而形成一个势垒。
这个势垒可以用来限制电子和空穴的运动方向,实现电子和空穴的分离和控制,从而用于制备二极管、太阳能电池等器件。
2.量子阱和量子井:通过在半导体异质结中形成非常薄的势垒层,可以限制电子和空穴在其中一方向上的运动,形成二维或零维电子气体。
这些二维和零维电子气体被称为量子阱和量子井,具有特殊的量子效应,如量子谐振子,可以制备激光器、光电器件等。
3.量子点:在半导体异质结界面上形成三维限制的势垒结构,可以限制电子和空穴在三个方向上的运动,形成零维的量子点结构。
量子点具有量子限制效应,能够实现对电子和光的精确控制,广泛应用于激光器、光电转换器等领域。
4.型谱学研究:通过在半导体异质结中引入不同材料,可以实现特定能带结构的调控。
通过对其吸收光谱、光致发光谱、拉曼散射谱进行研究,可以了解材料的能带结构和物理性质,为半导体器件的制备和应用提供基础。
半导体异质结结构在工业和科研领域有着广泛的应用。
例如,激光器是典型的半导体异质结结构应用。
利用半导体异质结导致的能带差,可以在激光器中实现可控的电子和空穴注入和互相复合,从而产生激光输出。
激光器广泛应用于通信、医疗、显示和材料加工等领域。
此外,半导体异质结结构还在半导体光电转换器件中得到应用。