数学期望与方差
- 格式:ppt
- 大小:4.38 MB
- 文档页数:79
一、基本知识概要:1、期望的定义:则称Eξ=x1P1+x2P2+x3P3+…+x n P n+…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。
E(c)= c特别地,若ξ~B(n,P),则Eξ=n P2、方差、标准差定义:Dξ=(x1-Eξ)2·P1+(x2-Eξ)2·P2+…+(x n-Eξ)2·P n+…称为随机变量ξ的方差。
Dξ的算术平方根ξD=δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。
若ξ~B(n,p),则Dξ=npq,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
考点一期望与方差例1:设随机变量ξ具有分布P(ξ=k)=15,k=1,2,3,4,5,求E(ξ+2)2,(21)Dξ-,(1)σξ-.例2:有甲、乙两个建材厂,都想投标参加某重点建设,为了对重点建设负责,政府到两建材厂抽样检查,他们从中各抽取等量的样品检查它们的抗拉强度指数其中ξ和η分别表示甲、乙两建材厂材料的抗拉强度,在使用时要求抗拉强度不低于120的条件下,比较甲、乙两建材厂材料哪一种稳定性较好.考点二离散型随机变量的分布、期望与方差例3:如图,一个小球从M处投入,通过管道自上而下落到A或B或C。
已知小球从每个叉口落入左右两个管道的可能性是相等的。
某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为1,2,3等奖。
(Ⅰ)已知获得1,2,3等奖的折扣率分别为50%,70%,90%。
记随机变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Eξ;(Ⅱ)若有3人次(投入1球为1人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).2、某同学参加3门课程的考试。
第27讲数学期望与方差的计算数学期望与方差是概率论和数理统计中的重要概念,用于描述随机变量的平均值和离散程度。
在实际问题中,计算数学期望和方差有助于理解和分析随机变量的特征,从而进行合理的决策和预测。
首先,我们来介绍数学期望的计算方法。
数学期望是随机变量的平均值,可以用来预测实验结果的平均结果。
对于离散型随机变量X,其数学期望E(X)的计算公式为:E(X)=Σ(x*P(X=x))其中,x表示随机变量的可能取值,P(X=x)表示随机变量取值为x的概率。
通过将每个可能取值与其对应的概率相乘,然后将所有结果相加,即可得到数学期望。
举个例子,假设我们有一个投硬币的实验,结果正面的概率为p,反面的概率为1-p。
我们定义随机变量X表示投硬币的结果,1表示正面,0表示反面。
那么投硬币的数学期望E(X)的计算公式为:E(X)=1*p+0*(1-p)=p即投硬币的数学期望为正面的概率。
类似地,对于连续型随机变量X,其数学期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,f(x)表示X的概率密度函数。
通过将每个可能取值与其对应的概率密度相乘,然后对所有结果进行积分,即可得到数学期望。
接下来,我们来介绍方差的计算方法。
方差是随机变量的离散程度的度量,反映了观测值与其平均值的偏离程度。
对于离散型随机变量X,其方差Var(X)的计算公式为:Var(X) = Σ((x - E(X))^2 * P(X = x))其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望。
通过将每个可能取值与其对应的偏离程度的平方与其概率相乘,然后将所有结果相加,即可得到方差。
举个例子,假设我们有一个骰子的实验,骰子有六个面,每个面的概率相等。
我们定义随机变量X表示骰子的结果,那么骰子的方差Var(X)的计算公式为:Var(X) = ((1-3.5)^2 + (2-3.5)^2 + ... + (6-3.5)^2) / 6即骰子的方差为35/12对于连续型随机变量X,其方差Var(X)的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望,f(x)表示X的概率密度函数。
二项分布的数学期望和方差公式二项分布是概率论中重要的离散概率分布之一,常用于描述重复进行相同试验的结果情况。
数学期望和方差是二项分布的重要统计量,本文将详细介绍二项分布的数学期望和方差的公式。
首先,我们来定义二项分布。
设有n次重复独立的试验,每次试验的成功概率为p,失败概率为q=1-p,试验结果只有成功或者失败两种情况。
则二项分布是描述n次试验中成功次数的概率分布。
1.二项分布的数学期望数学期望是描述随机变量均值的数理统计指标,可以看作是随机变量分布的中心位置。
对于二项分布,每次试验的成功概率为p,失败概率为q=1-p。
二项分布的数学期望记为E(x),表示n次试验中成功次数的均值。
根据二项分布的定义,每次试验中成功的概率为p,失败的概率为q,那么成功次数的期望可以表示为:E(x) = np其中,n表示试验次数,p表示每次试验成功的概率。
2.二项分布的方差方差是描述随机变量分散程度的数理统计指标,可以看作是随机变量分布的离散程度。
对于二项分布,每次试验的成功概率为p,失败概率为q=1-p。
二项分布的方差记为Var(x),表示n次试验中成功次数的离散程度。
根据二项分布的定义,每次试验中成功的概率为p,失败的概率为q,那么成功次数的方差可以表示为:Var(x) = npq方差的计算方法是将每次试验成功的概率乘以失败的概率,再乘以试验次数。
另外,二项分布的标准差可以通过方差开方得到,标准差是描述随机变量分布离散程度的一个重要指标。
3.二项分布的性质对于二项分布的数学期望和方差,有以下几个性质:性质1:数学期望的性质-当试验次数n固定时,成功概率p越大,数学期望越大。
-当成功概率p固定时,试验次数n越多,数学期望越大。
性质2:方差的性质-当试验次数n固定时,随着成功概率p的增加,方差先减小后增大,形状类似一个U型曲线。
-方差的计算方法中,成功概率p和失败概率q都会影响方差的大小。
成功概率p越大,失败概率q越小,方差越小。
数学期望与方差的运算性质教程一:复习公式离散随机变量(),(,)(,)(,)(,)i j ij i j ij i jP X Y a b p Eh X Y h a b p ==→=∑连续随机变量()()()2,~,(,)(,),R f x y Eg g x y f x y dxdy ξηξη→=⎰⎰二:期望运算性质()E aX bY c aEX bEY c ++=++应用例题、袋中装有m 个不同色小球,有返回取球n 次,出现X 种不同颜色,求EX 解答:用i X ⎧=⎨⎩1第i颜色球在n次取球中出现0第i颜色球在n次取球中没出现,则m X X X ++= 1由于()()1101,111,n ni i P X P X m m ⎛⎫⎛⎫==-==-- ⎪ ⎪⎝⎭⎝⎭()111/ni EX m =--,()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--==++=∑=nmi i m m m EX X X E EX 11111三、协方差:若,EX EY θμ==,()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦称为随机变量X 、Y 的协方差.covariance()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦()()()()()()()()()()()EYEX XY E XY E XY E Y E X E XY E E Y E X E XY E Y X XY E ⨯-=-=+--=+--=+-+-+=+--=θμθμθμμθθμθμθμθμθμθμ 例题:害虫一生产卵个数X 服从参数为λ的Poisson分布,若每个卵能孵化成下一代的概率都是p ,假定害虫后代个数为Y ,求cov(,)X Y解答:(,)()()(1)!i i jj ji j i e P X i Y j P X i P Y j X i C p p i λλ-≥-=======-!(1)(1)!!()!!()!i i j i j j i j e i e p p p p i j i j j i j λλλλ----=-=---000(,)(1)!()!i ij i ji j i i j e EXY ijP X i Y j ij p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EX iP X i Y j i p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EY jP X i Y j j p p j i j λλ-∞∞-=≤======--∑∑∑∑clear clcsyms i j p lamda positiveEXY=symsum(symsum(i*j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EX=symsum(symsum(i*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EY=symsum(symsum(j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)cov=simple(EXY-EX*EY); cov EXY =p*lamda*(lamda+1) EX = lamda EY = lamda*p cov = lamda*p可以看到,协方差不为0 例题:P180 3.4.8()[0,1][0,2],~(,)1/3()(,)f x y x y I x y ξη⨯=+,求(238)Var X Y -+syms x y positivemoment1=int(int((2*x-3*y+8)*1/3*(x+y),x,0,1),y,0,2); moment2=int(int((2*x-3*y+8)^2*1/3*(x+y),x,0,1),y,0,2); Var=moment2-moment1^2 Var = 245/81协方差计算公式()()()(),cov(,)EX a EY bX Y E X EX E Y EY E X a E Y b ===--=--()()()()E XY aY bX ab E XY aE Y bE X ab =--+=--+ ()E XY ab ba ab =--+ ()()()E XY E X E Y =-注: Y=X时得到什么公式?例题:若随机变量,X Y 独立,求它们的协方差解答:,EX EY θμ==,因为,X Y 独立,所以X Y θμ--、也相互独立()()()()cov(,)0X Y E X Y E X E Y θμθμ=--=-⨯-=⎡⎤⎣⎦注:相互独立随机变量协方差为0的逆命题不成立,如,假定随机变量~(1,1)X U -,则显然2cov(,)0X X =,但是2X X 、不独立 四、协方差和方差性质1:协方差是方差推广,方差是特殊协方差cov(,)()X X Var X =,cov(,)0X c =,cov(,)cov(,)X Y Y X =1111cov(,)cov(,)m n m ni i j j i j i j i j i j c X d Y c d X Y =====∑∑∑∑特殊地11111()cov(,)cov(,)mmmmmi i i i j i i i i j Var X X X X X =======∑∑∑∑∑111cov(,)cov(,)cov(,)m m m i j i j i i i j i j i X X X X X X ===≠⎡⎤==+⎢⎥⎣⎦∑∑∑∑1cov(,)()mi j i i j i X X Var X =≠⎡⎤=+⎢⎥⎣⎦∑∑11cov(,)()mmi j i i i j i X X Var X ==≠⎡⎤=+⎢⎥⎣⎦∑∑∑12cov(,)()mi j i i j iX X Var X =>=+∑∑特别地121212()()()2cov(,)Var X X Var X Var X X X +=++121212112212()cov(,)cov(,)cov(,)Var X X X X X X X X X X X X -=--=-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 1122122()cov(,)cov(,)cov(,)Var X X X X X X X =---- 1121222()cov(,)cov(,)cov(,)Var X X X X X X X =--+ 1212()()2cov(,)Var X Var X X X =+-这个结论说明,一般,和的方差并不等于方差之和 定理:若随机变量1,,n X X 相互独立,则111()2cov(,)()()nnni i j i i i i i j iVar X X X Var X Var X ===>=+=∑∑∑∑。
方差与期望的关系如下:
方差是衡量源数据和期望值相差的度量值。
方差(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在许多实际问题中,研究方差即偏离程度有着重要意义。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。
为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。
是最基本的数学特征之一。
它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。
(换句话说,期望值是该变量输出值的平均数。
期望值并不一定包含于变量的输出值集合里。
)。
期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。
当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。
因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。
这个故事里出现了“期望”这个词,数学期望由此而来。
定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。
[]1定义 2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。
(2)若k 是常数,则E (kX )=kE (X )。
(3))E(X )E(X )X E(X 2121+=+。
三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。
但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。
定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。
高一数学中的期望值与方差如何计算在高一数学的学习中,期望值和方差是两个非常重要的概念,它们在统计学和概率论中有着广泛的应用。
理解和掌握这两个概念的计算方法,对于我们解决实际问题和深入理解数学知识都具有重要的意义。
首先,让我们来了解一下什么是期望值。
期望值,简单来说,就是随机变量的平均取值。
如果我们把随机变量想象成一个“会变的数”,那么期望值就是它“平均会变成多少”。
假设我们有一个离散型随机变量X,它可能取值为x₁,x₂,x₃,,xₙ,对应的概率分别为 p₁,p₂,p₃,,pₙ。
那么这个随机变量 X的期望值 E(X)就可以通过以下公式计算:E(X) = x₁p₁+ x₂p₂+ x₃p₃++ xₙpₙ举个简单的例子,假设有一个掷骰子的游戏。
骰子有六个面,分别标有 1 到 6 的数字。
我们设随机变量 X 表示掷骰子得到的点数。
那么X 可能取值为 1、2、3、4、5、6,且每个点数出现的概率都是 1/6。
那么期望值 E(X)就等于:E(X) = 1×(1/6) + 2×(1/6) + 3×(1/6) + 4×(1/6) + 5×(1/6) +6×(1/6) = 35这意味着,如果我们多次掷骰子,平均得到的点数大约是 35。
接下来,我们再看看方差。
方差反映的是随机变量取值相对于期望值的分散程度。
如果方差较小,说明随机变量的取值比较集中在期望值附近;如果方差较大,则说明随机变量的取值比较分散。
离散型随机变量 X 的方差 Var(X)的计算公式为:Var(X) = E((X E(X))²)但为了计算方便,我们通常使用以下公式:Var(X) = E(X²) E(X)²同样以上面掷骰子的例子来说明。
我们先计算 E(X²):E(X²) = 1²×(1/6) + 2²×(1/6) + 3²×(1/6) + 4²×(1/6) + 5²×(1/6) + 6²×(1/6) = 91/6然后,已知 E(X) = 35,所以方差 Var(X)为:Var(X) = 91/6 35²=35/12 ≈ 292这表明掷骰子得到的点数相对期望值的分散程度。
数学期望和方差公式数学期望和方差是概率论和统计学中重要的概念,在许多领域中有广泛的应用。
它们是度量随机变量分布的指标,可以帮助我们了解随机现象的平均值和离散程度。
本文将详细介绍数学期望和方差的定义、性质以及计算公式。
一、数学期望数学期望,也称为均值或平均值,是衡量随机变量平均值的指标。
对于离散型随机变量X,它的数学期望E(X)的定义如下:E(X) = Σx * P(X = x)其中,x代表随机变量X可能取到的值,P(X = x)表示随机变量取到x的概率。
对于连续型随机变量X,它的数学期望E(X)的定义如下:E(X) = ∫x * f(x) dx其中,f(x)表示X的概率密度函数。
数学期望具有以下性质:1. 线性性质:对于任意实数a和b,以及任意两个随机变量X和Y,有E(aX + bY) = aE(X) + bE(Y)。
2. 递推性质:对于离散型随机变量X,可以通过递推公式E(X) = Σx * P(X = x)来计算。
3. 位置不变性:对于随机变量X和常数c,有E(X + c) = E(X) + c。
数学期望的计算公式可以帮助我们求解随机变量的平均值,进而了解随机现象的集中程度。
二、方差方差是衡量随机变量取值的离散程度的指标,它表示随机变量与其均值之间的差异程度。
对于离散型随机变量X,其方差Var(X)的定义如下:Var(X) = Σ(x - E(X))^2 * P(X = x)对于连续型随机变量X,其方差Var(X)的定义如下:Var(X) = ∫(x - E(X))^2 * f(x) dx方差具有以下性质:1. 线性性质:对于任意实数a和b,以及任意随机变量X和Y,有Var(aX + bY) = a^2 * Var(X) + b^2 * Var(Y)。
2. 位置不变性:对于随机变量X和常数c,有Var(X + c) = Var(X)。
3. 零偏性:Var(X) >= 0,当且仅当X是一个常数时,等号成立。