二氢嘧啶酮的合成
- 格式:ppt
- 大小:1.11 MB
- 文档页数:23
不对称Biginelli反应的研究进展郭永彪;高振华;钟辉;何小伟;孟祥燕;邹传品【摘要】综述了金属配合物、有机小分子(手性磷酸、手性硫脲)、金属Lewis酸与有机小分子共催化及纳米材料催化不对称Biginelli反应的研究进展。
详述了反应机理,分析了催化剂、底物及反应条件对产物收率和对映选择性的影响。
%The advances in catalytic asymmetric Biginelli reaction, including advances in metal cataly-sis, organocatalysis, metal Lewis and organocatalytic co-catalysis and nano-catalysis are comprehen-sively reviewed with 52 references. The reaction mechanism was described in detail, and the effects of catalysts, substrates and reaction conditions on the yield and enantioselectivity of the product were dis-cussed in detail.【期刊名称】《合成化学》【年(卷),期】2016(024)006【总页数】14页(P547-560)【关键词】Biginelli反应;不对称反应;3,4-二氢嘧啶-2(1H)酮;综述【作者】郭永彪;高振华;钟辉;何小伟;孟祥燕;邹传品【作者单位】北京药物化学研究所,北京 102205;北京药物化学研究所,北京102205;北京药物化学研究所,北京 102205;北京药物化学研究所,北京 102205;北京药物化学研究所,北京 102205;北京药物化学研究所,北京 102205【正文语种】中文【中图分类】O626;O621.3·综合评述·1893年,意大利化学家Pietro Biginelli首次报道了用苯甲醛、乙酰乙酸乙酯和尿素在乙醇中经浓盐酸催化回流18 h缩合制得3,4-二氢嘧啶-2(1H)-酮(DHPMs, Scheme 1)[1],后来人们将这一经典的化学反应称为Biginelli反应。
离子液体正丁基吡啶硫酸氢盐催化一锅法合成3,4-二氢嘧啶-2(1H)-酮周忠强;霍恒瑞;马琼;冉均;吴腊梅【摘要】采用离子液体正丁基吡啶硫酸氢盐([BPy]HSO4)作催化剂,利用Biginelli 反应在无溶剂条件下一锅法合成了3,4-二氢嘧啶-2(1H)-酮.与传统的Biginelli反应比较,此法具有反应时间短、收率较高、勿需使用溶剂、离子液体可重复使用的特点.【期刊名称】《中南民族大学学报(自然科学版)》【年(卷),期】2011(030)001【总页数】4页(P9-12)【关键词】正丁基吡啶硫酸氢盐;Biginelli反应;3,4-二氢嘧啶-2(1H)-酮【作者】周忠强;霍恒瑞;马琼;冉均;吴腊梅【作者单位】中南民族大学化学与材料科学学院,武汉,430074;中南民族大学化学与材料科学学院,武汉,430074;中南民族大学化学与材料科学学院,武汉,430074;中南民族大学化学与材料科学学院,武汉,430074;中南民族大学化学与材料科学学院,武汉,430074【正文语种】中文【中图分类】O621.3+4由于Biginelli反应的产物二氢嘧啶酮类化合物具有广泛的生物活性[1],近年,该反应引起了化学工作者的极大兴趣.离子液体作为一种“绿色”溶剂或催化剂以及某些催化剂的“液体载体”在催化和有机反应中发挥了独特的作用[2,3].文献报道中性或酸性咪唑类离子液体,如1-丁基-3-甲基咪唑六氟磷酸盐 (BM I mPF6)[4]、1-丁基-3-甲基咪唑氟硼酸盐(BM I mBF4)[4,5]、1-丁基-3-甲基咪唑邻磺酰苯酰亚胺盐(BM I mSac)[6]、1-羧甲基-3-甲基咪唑硫酸氢盐(CM I mHSO4)[7]、N-甲基咪唑四氟硼酸盐(HM I mBF4)、1-乙基-3-甲基咪唑四氟硼酸盐(EM I mBF4)[8]等可催化Biginelli反应.周美云等[9]使用廉价易得的离子液体正丁基吡啶四氟硼酸盐([BPy]BF4)作为Biginelli反应的催化剂和反应介质,反应在6 h内完成,产率为60%~73%.笔者合成了离子液体正丁基吡啶硫酸氢盐(见图1),并将其作为Beginelli反应的催化剂(见图2),以求进一步探索吡啶类离子液体在Biginelli反应中的催化性能.X-4数字显微熔点仪,N exus 470型傅里叶红外光谱仪,B ruker A vanceⅢ 400型核磁共振仪,TM S作内标.所有药品均为市售分析纯或化学纯试剂,未作纯化处理,直接使用.1.2.1 离子液体[BPy]HSO4的制备将8mL(0.1mol)吡啶和10.8mL(0.1mol)正溴丁烷加至100 mL圆底烧瓶中,机械搅拌下在90℃反应12 h.再加入13.8 g(0.1mol)一水合硫酸氢钠,继续于90℃继续搅拌1 h.冷却至室温,抽滤,滤液真空干燥得暗红色透明液体,产率86%.1H NM R(DM SO-d6,400 MHz)δ:0.86(t,3H),1.25(m,2H),1.87(m,2H),4.63(m,2H),7.61(1H,brs,OH),8.61(m,1H),8.13(m,2H),9.16(m,2H).1.2.2 离子液体[BPy]HSO4催化的有溶剂条件下的Beginelli反应将1.32 g(22 mmol)脲、20 mmol乙酰乙酸乙酯、22 mmol苯甲醛、2 mmol离子液体[BPy]HSO4和10mL溶剂加至50mL圆底烧瓶中,搅拌下回流2 h后蒸去溶剂,所得固体用15 mL蒸馏水洗涤,抽滤,粗产物用乙醇重结晶.1.2.3 离子液体[BPy]HSO4催化的无溶剂条件下的Beginelli反应将1.32 g(22mmol)脲、20 mmol乙酰乙酸乙酯(或乙酰丙酮)、22mmol芳香醛和2mmol离子液体[BPy]HSO4加至50 mL圆底烧瓶中,在一定的温度下搅拌,反应完成后,所得固体用15 mL蒸馏水洗涤,抽滤,粗产物用乙醇重结晶.滤液中的离子液体经减压除水后即可重复使用.Du等[10]报道了离子液体[BPy]HSO4的合成.笔者对[BPy]HSO4的制备方法进行了改进,参见文献[11]制备溴化丁基吡啶,所得溴化丁基吡啶不经纯化,直接与一水合硫酸氢钠于90℃、无溶剂条件下反应1 h,仅需过滤、干燥即可得到产物.与文献相比,本法操作简单,反应时间大为缩短,避免了使用有机溶剂和腐蚀性气体的产生. [BPy]HSO4催化苯甲醛、乙酰乙酸乙酯和尿素在不同溶剂中的缩合反应产率见表1.由表1可知,当在有机溶剂条件下,用乙腈作溶剂较其它溶剂,如三氯甲烷、乙醇的产率高.水是一种安全、廉价、无污染的绿色溶剂[12-13],但在[BPy]HSO4催化下反应物在水中回流2 h仅得到4%的产物.基于文献[14]报道许多有机化学反应可在无溶剂条件下进行,笔者在不使用任何溶剂的条件下进行[BPy]HSO4催化的苯甲醛、乙酰乙酸乙酯和尿素的缩合反应,反应时间为2 h,产率见表2.得到最佳反应条件即无溶剂的条件下,90℃时反应2 h,产率为85%.但如果无催化剂,则苯甲醛、乙酰乙酸乙酯和尿素在无溶剂条件下于100℃反应6 h得不到产物[6],然而仅加入少量[BPy]HSO4,反应即可顺利进行,这表明[BPy]HSO4能够很好地催化苯甲醛、乙酰乙酸乙酯和尿素的三组分缩合反应.笔者对不同取代的苯甲醛在无溶剂90℃条件下进行了实验,结果见表3.由表3知,离子液体[BPy]HSO4能催化一系列的芳香醛进行Biginelli反应,芳环上的拉电子基团和推电子基团对反应的影响规律不明显.选取2种产物进行IR和1H NM R测试,结果与文献值吻合:化合物1:1H NMR(DM SO-d6,400 M Hz)δ:1.09(t,J=7.0 Hz,3H,CH3),2.25(s,3H,CH3),3.98(q,J= 7.2Hz,2H,CH2O),5.15(s,1H,CH),7.25~7.33(m,5H,ArH),7.73(s,1H,NH),9.19(s,1H,NH);IR(KBr)ν:3245,3118,2977,1724,1704,1645,1 465,1222,1092 cm-1;化合物9:1H NM R(DM SO-d6,400M Hz)δ:1.09(t,J=7.0 Hz,3H,CH3),2.25(s,3H,CH3),3.98(q,J=6.8 Hz,2H,CH2O),5.15(s,1H,CH),7.13~7.26(m,4H,ArH),7.74(s,1H,NH),9.22(s,1H,NH);IR(KBr)ν:3244,3120,2976,1708,1645,1464,1 222,1090 cm-1.[BPy]HSO4催化苯甲醛、乙酰乙酸乙酯和尿素在无溶剂90℃条件下反应2 h后,反应混合物固化.将所得固体研细,用蒸馏水进行洗涤,过滤得到粗产物.滤液减压蒸去水,再加入反应物于相同条件下进行反应,结果见表4.由表4可知,尽管离子液体在循环使用过程中产率有所降低,但反复使用3次后产率仍有72%,说明该离子液体作为催化剂能有效回收再用.循环使用过程中产率有所降低可能是因催化剂的回收过程中离子液体有所损失所致.本文对离子液体正丁基吡啶硫酸氢盐([BPy]HSO4)的合成方法进行了改进.采用正丁基吡啶硫酸氢盐作催化剂,芳香醛、β-二羰基化合物和尿素在90℃无溶剂的条件下,采用一锅法反应得到3,4-二氢嘧啶-2(1H)-酮.该法具有操作简便、反应时间短、产率较高、产物易于纯化、催化剂可以回收再用、对环境友好的特点.【相关文献】[1] Kappe C O,Fabian W M F,SemonesM A.Conformational analysis of 4-aryl-dihydropyrim idine calcium channel modulators[J].Tetrahedron,1997,53(8):2803-2816.[2] W elton T.Room-temperature ionic liquids:solvents for synthesis and catalysis[J].Chem Rev,1999,99(8):2071-2084.[3] Parvulescu V I,Hardacre C.Catalysis in ionic liquids[J].Chem Rev,2007,107(6):2615-2665.[4] 彭家建,邓友全.室温离子液体催化“一锅法”合成3,4-二氢嘧啶-2-酮 [J].有机化学,2002,22(1):71-73.[5] 邵国强.离子液体中微波促进的Biginelli缩合反应[J].合成化学,2004,12(4):325-328.[6] 李明,郭维斯,文丽荣,等.新型无毒离子液体催化“一锅煮”合成3,4-二氢嘧啶-2(1H)-酮[J].有机化学,2005,25(9):1062-1065.[7] Zheng R W,W ang X X,Xu H,et al.Bronsted acidic ionic liquid:an efficient and reusable catalyst for the synthesis of 3,4-dihydropyr im idin-2(1H)-ones[J].SynthCommun,2006,36(11):1503-1513.[8] M a J J,Zang X H,Zhou X,et al.One-pot synthesis of 3,4-dihydro-pyr im idin-2-(1H)-ones catalyzed by acidic ionic liquid[J].Indian J Chem,2007,46B(12):2045-2048.[9] 周美云,李毅群.用离子液体四氟硼酸正丁基吡啶盐作催化剂和反应介质合成3,4-二氢嘧啶-2-酮[J].暨南大学学报:自然科学版,2006,27(3):435-438.[10] Du Y Y,T ian F L,Zhao W Z.[BPy]HSO4acidic ionic liquid as a novel,efficient,and environmentally benign catalyst for synthesis of 1,5-benzodiazepines under m ild conditions[J].Synth Commun,2006,36(12):1661-1669.[11] 王雨,郑晓宇,吴肇亮.室温离子液体催化联苄与十二烯-1的烷基化反应[J].石油学报:石油加工,2006,22(4):39-43.[12] Chanda A,Fokin V V.O rganic synthesis“on water”[J].Chem Rev,2009,109(2):725-748.[13] L i C J,Chen L.O rganic chem istry in water[J].Chem Soc Rev,2006,35(1):68-82.[14] Tanaka K,Toda F.Solvent-free organic synthesis[J].Chem Rev,2000,100(3):1025-1074.[15] Tu S J,Fang F,Zhu S L,et al.A new Biginelli reaction procedure using potassium hydrogen sulfate as the promoter for an efficient synthesis of 3,4-dihydropyr im idin-2(1H)-one[J]. J Heterocyclic Chem,2004,41(3):253-257.[16] Boumoud T,Boumoud B,Rhouati S,et al.A n efficientand recycling catalystforthe one-pot three-componentsynthesis ofsubstituted 3,4-dihydropyr im idin-2(1H)-ones[J]. E-J Chem,2008,5(4):688-695.[17] Jiang C,You Q D.A n efficient and solvent-free onepot synthesis of dihydropyr im idinones under m icrowave irradiation[J]. Chinese Chem L ett,2007,18(6):647-650.。
新技术新方法合成3-4-二氢嘧啶-2--酮类化合物新技术新方法合成3,4-二氢嘧啶-2-酮类化合物周韬摘要:本实验在无氧的条件下利用乙酰乙酸乙酯、苯甲醛和脲进行一锅反应制备了3,4-二氢嘧啶-2-酮,此方法为著名的Bilinelli反应。
提纯产物之后,对产物进行了红外、HPLC、核磁等一系列的表征。
关键词:Bilinelli反应,无氧条件,核磁氢谱引言:3,4-二氢嘧啶-2-酮衍生物通常具有广泛的生物活性,如抗病毒、抗肿瘤、抗菌和消炎作用等。
1893年,Biginelli用芳香醛、乙酰乙酸乙酯、尿素在盐酸催化下首次得到此类化合物,但存在反应时间长,产率低等缺点。
为了改进这些缺点,后来发展了微波技术、超声技术、固相合成、无溶剂合成等几种新的合成方法。
本实验采用不同于盐酸的新催化剂CoC1·6H2O来制备二氢嘧啶酮的外消旋体,结果显示这种方法在保证一定产率的前提下,大大缩短了反应时间。
1、实验部分1.1原理本实验用乙酸乙酯、苯甲醛和脲进行一锅反应制备3,4-二氢嘧啶-2-酮,该方法被称为Bilinelli反应,反应的通式如下图 1 Bilinelli反应通式当然,反应中还会产生水。
实验中采用常规无氧(尽可能无水)操作合成3,4-二氢嘧啶-2-酮的消旋体。
反应的进程用薄层色谱跟踪,得到的产物进行红外、HPLC、核磁等的表征。
马金广在“3,4-二氢嘧啶-2(1H)-酮的合成与理论研究[1]”中结合前人的研究,在几种可能的反应机理中确定了Bilinelli 反应的反应机理如下1.2试剂与仪器 1.2.1试剂乙酰乙酸乙酯(AR ),苯甲醛(AR ),脲(AR ),氯化钴,无水乙醇,去离子水,氮气瓶 1.2.2仪器磁力搅拌器,50mL 圆底烧瓶,油浴锅及加热装置,薄层色谱,布氏漏斗,烘箱,电子天平,熔点仪,红外光谱仪,HPLC ,核磁仪,真空泵 1.2.3物质物理常数表 1 反应物及产物的物理常数物质分子量相对密度/g.cm -3沸点/℃ 熔点/℃乙酰乙酸乙酯 130.14 1.020 180.4 -45 苯甲醛 106.12 1.044 179 -26 脲60.061.323 133-135 3,4-二氢嘧啶-2-酮 260.29203-2051.3实验步骤氮气球保护下,在100ml 三口烧瓶中加入乙酰乙酸乙酯(15mmol)、苯甲醛(10mmol)、脲(12mmol)、催化剂(1 mmol,CoC1·6H2O等)和20 ml 无水乙醇, 油浴加热,回流反应, 逐渐有固体析出,用薄层色谱跟踪反应进程(约2小时)。
应用化学毕业论文本科生毕业论文(设计)(申请学士学位)论文题目3,4-二氢嘧啶-2-酮衍生物的合成作者姓名赵先中专业名称应用化学指导教师李永红2013年5月29日滁州学院本科毕业论文滁州学院本科毕业设计(论文)原创性声明本人郑重声明:所呈交的设计(论文)是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。
本人完全意识到本声明的法律后果由本人承担。
作者签名:年月日目录摘要 (1)ABSTRACT (1)1 前言 (3)1.13,4-二氢嘧啶-2-酮衍生物研究综述 (3)1.1.1 催化剂方面的研究 (4)1.1.2 合成方法方面的研究 (5)1.1.3 Biginelli反应的应用 (6)1.2反应机理 (7)1.3实验内容介绍 (4)2 实验部分 (4)2.1实验仪器与试剂 (4)2.1.1 实验仪器 (10)2.1.2 实验试剂 (11)2.2实验方案与操作步骤 (12)2.2.1实验方案 (12)2.2.2实验探索 (5)2.2.3操作步骤 (13)3 实验结果与讨论 (6)3.1合成条件对产率的影响 (6)3.1.1 反应温度对产率的影响 (6)3.1.2 微波功率对产率的影响 (6)3.1.3 反应物配比对产率的影响 (7)3.1.4 催化剂用量对产率的影响 (7)3.1.5 反应时间对产率的影响 (8)3.2优化合成条件下的平行实验 (8)3.3常规加热法合成目标产物 (9)3.4产物的表征 (9)3.4.1 产物的一般性状及熔点测定 (9)3.4.2 产物的红外光谱分析 (9)4 结论 (22)参考文献 (23)致谢 (26)3,4-二氢嘧啶-2-酮衍生物的合成摘要:以无水乙醇为溶剂,氨基磺酸为催化剂催化苯甲醛、苯乙酮和尿素进行Bigielli 缩合,用微波合成法生成4,6-二苯基-3,4-二氢嘧啶-2-酮。