小波去噪的流程图
- 格式:ppt
- 大小:2.37 MB
- 文档页数:28
小波去噪方法及步骤
本文主要介绍小波分解与重构法、非线性小波变换阈值法、平移不变量小波法以及小波变换模极大值法这4种常用的小波去噪方法。
将它们分别用于仿真算例的去噪处理,并对这几种方法的应用场合、去噪性能、计算速度和影响因素等方面进行比较。
选择了Matlab软件中的仿真信号Blocks作为原始信号,信号长度(即采样点数)N=2048,如图1a所示。
由于该信号中含有若干不连续点和奇异点,因此用以下几种方法对图1b中叠加了高斯白噪声的Blocks信号(信噪比为7)进行去噪处理,能够很清楚地比较出这几种方法的去噪性能。
图1 原始信号和含噪信号的时域波形
一、小波去噪方法
1、小波分解与重构法去噪
小波分解与重构的快速算法,即Mallet算法。
据这一算法,若fk为信号f (t)的离散采样数据,fk=c0,k,则信号f(t)的正交小波变换分解公式为:。
资源共享框架合作协议范本1. 引言本资源共享框架合作协议(以下简称“协议”)由以下几方共同签署:__________(公司/组织名称),注册地址___________,以下简称“甲方”;__________(公司/组织名称),注册地址___________,以下简称“乙方”。
甲方和乙方以下合称为“双方”。
本协议旨在明确甲方和乙方之间关于资源共享框架的合作事项,确保双方的权益得到保障,并促进双方之间的合作和交流。
2. 合作内容2.1 资源共享框架的开发和维护双方将共同合作开发和维护一套资源共享框架,该框架包括但不限于以下功能:•资源上传与下载功能;•资源分类与搜索功能;•资源权限管理功能;•用户注册与登录功能;•其他相关功能。
在开发和维护过程中,双方将根据实际需要确定开发计划,并按照约定的时间节点和质量要求完成开发任务。
2.2 资源共享框架的使用和推广双方将就资源共享框架的使用和推广进行合作。
甲方将提供一定的资金支持,用于推广资源共享框架,并协助乙方进行市场推广和用户培训工作。
乙方将负责制定和执行推广计划,并根据实际情况逐步扩大资源共享框架的用户群体。
3. 权益和义务3.1 甲方的权益和义务•甲方拥有资源共享框架的知识产权,并对该框架享有全部权益;•甲方有权要求乙方按照约定的要求和标准开发和维护资源共享框架;•甲方有权对乙方在开发和维护过程中的工作进行合理检查和监督;•甲方有权对乙方提供的推广计划和成果进行评估和审核;•甲方有权随时终止本协议,并要求乙方停止一切与资源共享框架相关的活动。
3.2 乙方的权益和义务•乙方有权使用甲方提供的资源共享框架,并享有框架使用所产生的收益;•乙方有权参与资源共享框架的开发和维护,并享有协作过程中的相关权益;•乙方有义务按照约定的要求和标准开发和维护资源共享框架;•乙方有义务及时向甲方提供开发和推广工作的进展情况,并积极响应甲方的需求;•乙方有义务保证资源共享框架的稳定运行,并尽力解决在使用过程中出现的问题。
一种改进小波阈值图像去噪方法【摘要】:采用MATLAB进行仿真实验,首先分别对含噪图像使用改进的阈值,改进的阈值函数进行降噪处理,然后将两者结合起来应用于含噪图像。
实验结果表明,使用改进后的阈值和阈值函数进行图像降噪,较之现有的经典方法,通常可获得更好的效果。
【关键词】:小波;阈值;阈值函数;去噪近年来,出现了一种新的数学工具——小波变换,它较之只能提取出函数在整个频率轴上的频率信息,却不能反映信号在局部时间范围内的特征傅立叶变换,在时域和频域同时具有良好的局部化性质,且对于高频成分采用逐渐精细的时频取样步长,从而可以充分突出研究对象的任何细节。
小波变换的这种特点非常符合图像去噪中保留图像细节方面的要求,并且以其低熵性、多分辨率、去相关性、选基灵活性等优点,在图像降噪处理中得到越来越广泛的应用,本文重点讨论利用小波变换进行图像去噪的方法。
1.小波图像去噪小波图像去噪方法属于图像变换域去噪方法,从信号学的角度看,小波去噪是一个信号滤波的问题,而且尽管在很大程度上小波去噪可以看成是低通滤波,但是由于在去噪后,还能成功地保留图像特征,所以在这一点上又优于传统的低通滤波器。
小波去噪实际上是特征提取和低通滤波功能的综合,其流程如图所示:图1小波去噪框图小波去噪方法中最早被提出的是小波阈值去噪方法,它是一种实现简单而效果较好的去噪方法。
1.1小波阈值去噪1.1.1选取阈值函数在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同处理策略以及不同估计方法。
常用的阈值函数有硬阈值函数和软阈值函数两种,硬阈值策略保留大于阈值的小波系数,而把小于阈值的小波系数都设定为零。
软阈值策略把小于阈值的小波系数置零,把大于阈值的小波系数的绝对值减去阈值以去除噪声的影响。
硬阈值方法可以很好的保留图像边缘等局部特征,但图像会出现振铃、伪Gibbs效应等视觉失真,而软阈值处理虽相对平滑,但可能会造成边缘模糊等失真现象,这都是我们在工程降噪中所不希望看到的。
小波变换图像去噪方法MATLAB实现本文的主要工作是:(1)对各种传统的图像去噪方法用MATLAB实现,并进行对比,总结各种方法的优缺点。
(2)阐述小波变换的发展历程、思想、概念和基于小波变换图像去噪的基本方法。
(3)研究小波分解层数、小波基的选择对图像去噪结果的影响。
(4)用MATLAB编程实现基于小波变换的图像去噪,并计算处理后图像的SNR和MSE。
关键词:图像去噪;小波变换;小波基;分解层数小波阈值去噪的原理从数学角度看小波去噪问题的实质是寻找最佳映射,即寻找从实际信号空间到小波函数空间的最佳映射,从而将原始信号和噪声信号分开,得到原始信号的最佳恢复。
从信号学的角来看,小波去噪实质是一个信号滤波问题,它可以看成是特征提取和低通滤波功能的综合,它既具有传统低通滤波器的功能,还能在去噪后保留信号的特征,其等效框图如下所示:图 3.2 小波去噪等效框小波阈值去噪的步骤如下:(1)根据信号特点和消噪要求选择合适的基小波和分解层数,对含有的噪声信号f(k)作小波变换,得到一组小波系数w j,k 。
图像经过采样后得到一系列的矩阵,然后将图像转换到小波域,此时的图像可以分为一个低通分量LL 和三个高通分量(HL ,LH ,HH),三个高通分量中一个为高通分量部分,剩下两个为次高频部分。
分解过程如下所示:图3.3 图像分解过程f(t)为一维信号,对其进行N 点采样后的离散信号为f(n),N 取0,1,2,...,N-1 ,其小波变换为: Wf (j,k )=2−j 2∑f (n )φ(2−j N−1n=0n −k) (11)其中Wf(j,k)为小波系数,简记为w j,k 。
小波系数可以分为两类:第一类 小波系数仅仅由噪声经过小波变换得到的;第二类 小波系数由信号经过小波变换的来,其中包含有噪声变换的结果。
(2)对w j,k进行阈值处理后得到估计的小波系数ŵj,k,使得‖ŵj,k−u j,k‖尽可能的小。
Matlab工具箱做小波音频图像压缩去噪信计12 徐文豪21109020391.matlab小波工具箱简介利用Matlab小波工具箱可以便利地做音频和图像的压缩和去噪,其操作界面如下图所示:其中”Wavelet 1-D”用来做音频的压缩和去噪,”wavelet 2-D”用来做图像的压缩和去噪。
具体操作时,可以选择不同的正交小波基和分解层次。
2.音频压缩2.1 音频压缩流程图值得一提的是,如果想要压缩的不是wav信号,比如mp3文件,可以先用格式转换工具,比如FormatFactory将其转换为wav信号。
2.2 音频解压流程图2.3 音频压缩效果比较考虑到正交小波基种类繁多,因而只比较较常用的haar、db和sym。
(1)量化音频压缩效果为了比较用不同正交小波基在不同分解层次下的压缩效果,有必要做一些量化处理。
考虑到,对同一音频信号,在取0率相同的情况下,压缩效果越好的正交小波基,其能量保留的应该越多。
因而,可先固定取0率,然后以能量保留百分比作为压缩效果的衡量指标。
(2)不同分解层次音频压缩效果比较不失一般性,考虑db4在取0率为95%的情况下在不同分解层次下的压缩效果,结果如下图:从图中可以看出,压缩效果随着分解层次的增加而增大,且增大速度先快后慢,最终压缩效果趋于稳定。
从理论上看,分解层次越多,出现小系数比率就越大,因而实验所得结果是与理论相符的。
可惜的是,在分解层次小于5时,可能是因为压缩效果已经太差,小波工具箱没给出其取0率为95%的情况,不然图像可以更加细致。
然而,也不能说分解层次越多越好,因为随着分解层次的增加,用于压缩和解压的时间会明显增加,因而这需要有一个折中。
(3)不同连续等级音频压缩效果比较对同种正交小波基,在分解层次固定时,可以比较不同连续等级对压缩效果的影响,考虑分解层次为5,取0率为95%,连续等级从1到7的db小波,结果如下图所示:从图中可以看出,随着小波基越来越连续,压缩效果是逐渐变大的,但增长速度也是先快后慢,且最终趋于平稳。
编程实现平移不变量去噪的快速算法,结合例子验证该方法的去噪性能[程序说明]:共包含三个M 函数文件,分别是:shift_left函数,实现信号序列向左循环平移一位;shift_right 函数,实现信号序列向右循环平移一位,这两个函数在程序实现和功能上都很简单,在此不再赘述;TI_Denoise 函数,是该算法的主函数,用快速算法实现含噪信号的TI 去噪。
以下是该函数的帮助文档,比较清楚地说明了各参数的意义和该函数的用法:% Fast TI_Denoising of 1-d signal with wavelet thresholding.% Usage% y=TI_Denoise(signal,wavename,L)% Inputs% signal 1-d noisy signal, length(signal)= 2^J. J must be an positive integer.% wavename name of wavelet% L Low-Frequency cutoff for shrinkage. L <= J.% Outputs% y the signal after being denoised另外一个文件main 调用了TI_Denoise 函数,分别用不同种类的小波,对系统自带的几个含噪信号进行了平移不变量去噪,并将去噪前后的信号显示出来。
其中的signal 可以选用系统本身带有的几个含噪信号之一,小波wavename 和分解级数L 也可任意选择(L<=J),以此对各种条件下的TI 去噪性能进行比较。
具体的M 程序文件见附件。
[算法流程]:TI 小波去噪的功能基本上全是在TI_Denoise 函数中实现的,主要流程如下:1. 快速TI 前向小波分解原理与课本上一致,不再赘述;这里调用了shift_left 函数,来对各分辨级上的低频信号进行平移;做小波变换时,直接调用了dwt,并将延拓方式设为周期型’per’,保证了分解后系数的总数目不变;每一级dwt 后的系数均直接存入TI 表中,这里将每一级的低频系数也存入了TI表中,置于第一列,到下一级时再将其更新,直至最后一级的低频系数存入,则不再发生变化。
《现代信号处理》大作业基于Matlab的小波分解、去噪与重构目录一作业内容及要求 (3)1.1 作业内容 (3)1.2 作业要求 (3)二系统原理 (3)2.1 小波变换原理 (3)2.2 阈值去噪原理 (3)三系统分析及设计 (5)3.1 图像分解 (5)3.2 高频去噪 (5)3.3 图像重构 (6)四程序编写 (7)4.1 main函数 (7)4.2 分解函数 (9)4.2.1 二维分解函数 (9)4.2.2 一维分解函数 (10)4.3 卷积函数 (10)4.4 采样函数 (11)4.4.1 下采样函数 (11)4.4.2 上采样函数 (11)4.5 重构函数 (12)4.5.1 二维重构函数 (12)4.5.2 一维重构函数 (13)五结果分析及检验 (14)5.1 结果分析 (14)5.2 结果检验 (16)六心得体会 (18)参考文献 (19)一作业内容及要求1.1 作业内容用小波对图像进行滤波分解、去噪,然后重构。
1.2 作业要求用小波对图像进行滤波分解、去噪,然后重构。
具体要求:(1) 被处理图像可选择:woman, wbarb, wgatlin, detfingr, tire.;(2) 可以选择db等正交小波、或双正交小波(或用几种小波);(3) 用选用小波的分解滤波器通过定义的卷积函数conv_my( )对图像二维数组进行小波分解,并进行下采样,获取CA、CV、CD、CH等分解子图;(4) 对高频信号子图进行去噪处理,可以采用软阈值、硬阈值等方法;(5) 用选用小波的综合滤波器对去噪的子图进行图像重构。
二系统原理2.1 小波变换原理小波变换的一级分解过程是,先将信号与低通滤波器卷积再下采样可以得到低频部分的小波分解系数再将信号与高通滤波器卷积后下采样得到高频部分的小波分解系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。
二维小波分解重构可以用一系列的一维小波分解重构来实现。
用小波变换和中值滤波研究差分干涉图的去噪*余景波1,2,刘国林1,2,王建波1,葛振坦1,2(1.山东科技大学测绘科学与工程学院,山东青岛266510;2.海岛(礁)测绘技术国家测绘局重点实验室,山东青岛266510)摘 要:介绍了小波变换的基本原理和图像去噪常见的滤波方法,采用几种常见滤波分别对模拟差分干涉图和EVISAT卫星获取的矿区真实合成孔径雷达(ASAR)数据的差分干涉图分别进行滤波去噪处理,并对其去噪效果进行分析。
采用小波变换和中值滤波相结合的方法对矿区真实ASAR数据差分干涉图进行去噪处理,并对先中值滤波再小波变换和先小波变换再中值滤波两种方式去噪结果分别进行了分析比较,结果表明:先小波变换再中值滤波去噪后,图像保真效果较好。
关键词:小波变换;中值滤波;模拟干涉图;ENVISA T卫星;矿区真实A SAR数据差分干涉图;去噪中图分类号:T P751 文献标志码:A 文章编号:1008 9268(2011)02 0029 070 引 言先进的合成孔径雷达(ASAR)数据差分干涉图在平地效应消除后,由于受到噪声的污染,从而存在大量残差点,给相位解缠带来了难度,所以,对ASA R数据差分干涉图进行滤波处理是十分必要的。
差分干涉图的噪声主要来源于以下几个方面[1 3]:InSAR系统本身的热噪声;相位图的相干斑点噪声;基线失相干和时间失相干等。
许多学者给出了不同对差分干涉图进行滤波处理的方法。
Lee等人[4]提出了应用加性相位噪声模型去除干涉图相位图噪声的方法,该方法能够较好的保持相位条纹的连续性,但是计算工作量极大。
Eichel等人[5]提出了圆周均值滤波方法,它在理论上具有最大似然最优的滤波效果,但在保持相位条纹连续性上较差。
Lanari和Fornaro等人[6]提出的圆周中值滤波方法,能够保持相位条纹连续性,由于没有使用信号统计规律,其滤波效果不是最好的。
本文采用常见的滤波对模拟干涉图和矿区ASA R数据差分干涉图进行滤波去噪处理,比较其滤波效果;最后,使用小波变换和中值滤波结合方法对矿区真实ASAR数据差分干涉图进行滤波处理。
小波去噪的流程图小波去噪是一种基于小波变换的信号去噪方法,它通过对信号进行小波变换,将信号分解成多个频带,并通过对每个频带的小波系数进行去噪处理,最终重构信号以达到去噪的目的。
以下是小波去噪的流程图:1、选择小波基和分解层数首先,需要选择合适的小波基和分解层数。
小波基的选择应该根据信号的特性和去噪要求来确定,而分解层数则应该根据信号的复杂度和去噪要求来确定。
2、对信号进行小波变换将选定的小波基应用于输入信号,将其进行小波变换,将信号分解成多个频带。
小波变换可以将信号在不同频带上分解成不同的频率成分,从而将噪声和信号分离。
3、对小波系数进行去噪处理对每个频带的小波系数进行去噪处理,以消除噪声对信号的影响。
常用的去噪方法包括阈值去噪、模极大值去噪和相关性去噪等。
4、对去噪后的信号进行小波逆变换对每个频带去噪处理后的小波系数进行小波逆变换,将信号重构为原始信号。
5、对重构的信号进行后处理对重构的信号进行必要的后处理,如滤波、平滑等,以提高去噪效果和信号的质量。
综上所述,小波去噪的流程包括选择小波基和分解层数、对信号进行小波变换、对小波系数进行去噪处理、对去噪后的信号进行小波逆变换和对重构的信号进行后处理等步骤。
通过这些步骤,可以有效地去除信号中的噪声,提高信号的质量。
流程图4装修申请流程图装修申请流程图一、关键词1、装修申请2、流程图3、申请材料4、审核流程5、施工监管6、完成验收二、文章内容装修申请流程图详解在房屋装修过程中,申请装修是一个必不可少的环节。
本文将通过流程图的形式,详细介绍装修申请的整个过程,帮助您更好地了解这一流程。
首先,我们需要准备装修申请材料。
具体包括:房屋产权证明、身份证或营业执照、装修方案以及施工图纸等。
接下来,我们将进入审核流程。
在这一阶段,物业公司或相关部门将对您的装修申请材料进行审核。
审核内容主要包括装修方案是否符合规定,施工图纸是否完整等。
如果申请材料审核通过,您将进入施工监管环节。