小波去噪matlab学习指令
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
数字图像阈值去噪算法研究与实现摘要图像在获取和传输的过程中经常要受到噪声的污染。
噪声对图像分析有着非常重要的影响,必须在分析前去除。
所以,图像去噪成为图像分析和处理的重要技术。
传统的去噪方法不仅滤出了图像的噪声,同时使图像细节变得模糊。
小波变换是继傅琨叶变换之后的又一时频分析工具。
小波变换由于在时域频域同时具有良好的局部化性质和多分辨率分析的特点,因此不仅能满足各种去噪要求,如低通、高通、随机噪声的去除,而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的数学显微镜。
其应用包括图像预处理、图像压缩与传输、图像分析、特征提取等图像处理的很多阶段。
首先,介绍了本课题的研究目的,并介绍了目前常用的去噪方法及这些方法之间的比较。
其次,在简述了小波变换的发展历史和小波变换的基本理论知识后,对以小波为工具在数字图像处理方面进行了有益的探索。
再次,给出了小波边缘检测理论,接下来针对小波去噪的理论和方法着重进行了介绍,包括小波去噪的原理、方法和阈值去噪处理等方面的内容。
最后,对本文的工作进行了总结。
小波变换由于具有“数学显微镜”的作用,在去噪的同时能保持图像细节,得到原图像的最佳恢复。
在众多的小波去噪方法中,运用最多的是Donoho小波阈值萎缩法,但Donoho给出的阈值有“过扼杀”小波系数的倾向,重建误差较大。
本文提出基于小波变换与中值滤波相结合的方法实现了图像去噪。
该方法在去噪之前,先通过小波边缘检测确定图像边缘特征的小波系数,保留这些位置的小波系数,其不受闽值去噪影响,对其它位置的小波系数进行自适应阈值去噪,去除高斯噪声。
然后对图像进行中值滤波,去除椒盐噪声。
该算法的实验结果表明不仅能滤出图像中高斯噪声和椒盐噪声的混合噪声,而且能较好的保留图像的边缘细节,其滤波效果优于传统的图像去噪方法。
关键词:小波变换,高斯噪声,椒盐噪声,边缘检测,图像去噪ABSTRACTThe image iS often corrupted by noise in its acquisition or transmission.The noise to be removed before analysis has an important effect on image analysiS.Image~denoising is an important technology in image analysis and processingdomain.Traditional denoising methods can filter noise。
利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
小波图像去噪及matlab实例图像去噪图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。
小波去噪随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。
具体来说,小波能够去噪主要得益于小波变换有如下特点:(1)低熵性。
小波系数的稀疏分布,使图像变换后的熵降低。
意思是对信号(即图像)进行分解后,有更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原始信号。
(2)多分辨率特性。
由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。
(3)去相关性。
小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。
(4)基函数选择灵活。
小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。
根据基于小波系数处理方式的不同,常见去噪方法可分为三类:(1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。
阈值函数选择阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。
(1)硬阈值当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即:(2)软阈值当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。
完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。
数字图像处理(Digital Image Processing。
DIP)是指用计算机辅助技术对图像信号进行处理的过程。
DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。
然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。
一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。
当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。
在频域上有Ψa,b(x)=ae-jωΨ(aω)。
因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。
这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。
总的来说,小波变换具有更好的时频窗口特性。
噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。
噪声通常是不可预测的随机信号。
由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。
【引言】1. 背景介绍:在实际工程和科研中,数据经常受到各种噪声的干扰,因此需要对数据进行降噪处理。
2. 目的和意义:降噪处理可以使得数据更加真实可靠,有利于后续的分析和应用。
【matlab 曲线降噪的方法】3. 小波变换简介:小波变换是一种时频分析的方法,可以将信号分解为不同尺度的成分,对于曲线降噪具有很好的效果。
4. matlab中的小波变换函数:matlab提供了丰富的小波变换函数,包括连续小波变换和离散小波变换,用户可以根据具体需求选择合适的函数进行数据处理。
【matlab 曲线降噪的实现步骤】5. 数据准备:首先需要准备需要处理的数据,可以是实验采集的曲线数据,也可以是从其他渠道获取的曲线信息。
6. 选择小波函数:根据数据的特点和需求,选择合适的小波函数进行变换,常用的小波函数包括Daubechies小波、Haar小波等。
7. 对数据进行小波变换:利用matlab提供的小波变换函数,对数据进行小波分解,得到不同尺度的小波系数。
8. 降噪处理:根据小波系数的大小和分布,可以采用阈值处理、软硬阈值处理等方法对小波系数进行滤波,实现曲线的降噪处理。
9. 重构数据:经过降噪处理后,需要利用小波系数重构原始数据,得到降噪后的曲线信息。
【matlab 曲线降噪的应用实例】10. 实验数据:以某地震波形数据为例,介绍如何利用matlab的小波变换函数进行曲线降噪处理。
11. 数据分析:对比降噪前后的波形数据,分析降噪处理的效果和优势。
12. 结果展示:通过图表展示降噪前后的数据对比,直观地展现曲线降噪的效果。
【matlab 曲线降噪的注意事项】13. 参数选择:在进行小波变换和降噪处理时,需要合理选择小波函数和参数,以及阈值处理的方式和大小。
14. 原理理解:对小波变换的原理和数据特点有一定的理解,有利于选择合适的方法和优化参数。
15. 实时调试:在实际应用中,可以通过反复调试和对比分析来确定最佳的处理方案,实现最佳的降噪效果。
一维信号去噪方法及matlab方法
一维信号去噪方法及MATLAB实现步骤如下:
一维信号去噪方法:
1. 小波变换:利用小波变换对信号进行多尺度分析,保留有用信号的小波系数,去除噪声的小波系数,最后重构信号。
2. 滤波器:设计合适的滤波器,使噪声信号经过滤波器后被滤除,保留有用信号。
常用的滤波器有中值滤波器、低通滤波器、高通滤波器等。
3. 统计方法:利用统计方法对信号进行概率统计,根据信号和噪声的不同统计特性进行去噪。
常用的统计方法有均值滤波、加权均值滤波、中位数滤波等。
4. 频域变换:将信号从时域变换到频域,利用信号和噪声在频域的不同特性进行去噪。
常用的频域变换方法有傅里叶变换、小波变换等。
MATLAB实现步骤:
1. 导入信号:使用MATLAB中的函数读取一维信号数据。
2. 预处理:对信号进行必要的预处理,如平滑处理、去除异常值等。
3. 去噪处理:根据选择的方法对信号进行去噪处理,如小波变换去噪、滤波器去噪、统计方法去噪或频域变换去噪等。
4. 后处理:对去噪后的信号进行必要的后处理,如数据归一化、插值等。
5. 显示结果:使用MATLAB中的绘图函数将原始信号、噪声信号和去噪后的信号进行可视化比较。
6. 保存数据:将去噪后的数据保存到文件中,方便后续分析。
需要注意的是,不同的一维信号去噪方法适用于不同类型的噪声和信号,应根据实际情况选择合适的方法。
同时,MATLAB提供了丰富的函数和工具箱,可以方便地实现各种一维信号去噪处理。
小波阈值去噪matlab程序小波阈值去噪是一种常用的信号处理方法,可以在Matlab中使用Wavelet Toolbox来实现。
下面是一个简单的小波阈值去噪的Matlab程序示例:matlab.% 生成含有噪声的信号。
t = 0:0.001:1;y = sin(2pi100t) + randn(size(t));% 进行小波阈值去噪。
wname = 'db4'; % 选择小波基函数。
level = 5; % 选择分解的层数。
noisySignal = wdenoise(y, 'DenoisingMethod','UniversalThreshold', 'ThresholdRule', 'Soft', 'Wavelet', wname, 'Level', level);% 绘制结果。
figure.subplot(2,1,1)。
plot(t,y)。
title('含噪声信号')。
subplot(2,1,2)。
plot(t,noisySignal)。
title('去噪后信号')。
在这个示例中,首先生成了一个含有噪声的信号,然后使用`wdenoise`函数进行小波阈值去噪。
在`wdenoise`函数中,我们选择了小波基函数为db4,分解的层数为5,DenoisingMethod为UniversalThreshold,ThresholdRule为Soft。
最后绘制了含噪声信号和去噪后的信号。
需要注意的是,小波阈值去噪的具体参数选择和调整需要根据实际情况进行,上述示例仅供参考。
希望这个简单的示例可以帮助你开始在Matlab中实现小波阈值去噪。
Matlab小波函数一、Matlab小波去噪基本原理1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频信号。
利用多层小波,将高频噪声信号从混合信号中分解出来。
2、选择合适的阈值对图像的高频信号进行量化处理3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信号来重构图像的信息。
二、第二代小波变换1、构造方法特点:(1)继承了第一代小波的多分辨率的特性。
(2)不依赖fourior变换,直接在时域完成小波变换。
(3)变换之后的系数可以是整数。
(4)图像恢复质量与变换是边界采用何种延拓方式无关。
2、优点:算法简单,速度快,适合并行处理。
对存需求量小,便于DSP芯片实现、可用于本位操作运算。
3、提升原理:构造紧支集双正交小波(1)步骤:分裂—预测—更新(2)分解与重构三、matlab小波函数库1、matlab小波通用函数:(1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】wavemngr(‘add’,FN,FSN,WT,NUMS,FILE)wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B)% 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示无尺度函数的复小波。
小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串FILE表示文件名B=[lb ub]指定小波有效支撑的上下界wavemngr(‘del’,N) %删除小波wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波OUT1= wavemngr(‘read’) %返回小波族的名称OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称OUT1= wavemngr(‘read_asc’)%读取wavelets.asc文件并返回小波信息(2)scal2frq函数【尺度转换频率】F=scal2frq(A,’wname’,DELTA)%返回由尺度A,小波函数“wname”和采样周期DELTA决定的准频率。
《现代信号处理》大作业基于Matlab的小波分解、去噪与重构目录一作业内容及要求 (3)1.1 作业内容 (3)1.2 作业要求 (3)二系统原理 (3)2.1 小波变换原理 (3)2.2 阈值去噪原理 (3)三系统分析及设计 (5)3.1 图像分解 (5)3.2 高频去噪 (5)3.3 图像重构 (6)四程序编写 (7)4.1 main函数 (7)4.2 分解函数 (9)4.2.1 二维分解函数 (9)4.2.2 一维分解函数 (10)4.3 卷积函数 (10)4.4 采样函数 (11)4.4.1 下采样函数 (11)4.4.2 上采样函数 (11)4.5 重构函数 (12)4.5.1 二维重构函数 (12)4.5.2 一维重构函数 (13)五结果分析及检验 (14)5.1 结果分析 (14)5.2 结果检验 (16)六心得体会 (18)参考文献 (19)一作业内容及要求1.1 作业内容用小波对图像进行滤波分解、去噪,然后重构。
1.2 作业要求用小波对图像进行滤波分解、去噪,然后重构。
具体要求:(1) 被处理图像可选择:woman, wbarb, wgatlin, detfingr, tire.;(2) 可以选择db等正交小波、或双正交小波(或用几种小波);(3) 用选用小波的分解滤波器通过定义的卷积函数conv_my( )对图像二维数组进行小波分解,并进行下采样,获取CA、CV、CD、CH等分解子图;(4) 对高频信号子图进行去噪处理,可以采用软阈值、硬阈值等方法;(5) 用选用小波的综合滤波器对去噪的子图进行图像重构。
二系统原理2.1 小波变换原理小波变换的一级分解过程是,先将信号与低通滤波器卷积再下采样可以得到低频部分的小波分解系数再将信号与高通滤波器卷积后下采样得到高频部分的小波分解系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。
二维小波分解重构可以用一系列的一维小波分解重构来实现。
小波去噪是信号处理中常用的一种方法,在MATLAB中也有相应的函数可以实现小波去噪。
下面我们将介绍MATLAB中对1维数据进行小波去噪的具体过程。
1. 准备原始数据我们需要准备一维的原始数据,可以是来自传感器采集的数据,也可以是从文件中读取的数据。
在MATLAB中,可以使用load函数或者从其它数据源导入数据。
2. 选择小波基和分解层数在进行小波去噪之前,需要选择适合的小波基和分解层数。
MATLAB 中提供了丰富的小波基选择,包括Daubechies小波、Symlet小波、Coiflet小波等。
根据信号的特点和需要去除的噪声类型,选择合适的小波基和分解层数。
3. 进行小波分解使用MATLAB中的wavedec函数对原始数据进行小波分解。
该函数的调用形式为[C, L] = wavedec(X, N, wname),其中X为原始数据,N为分解层数,wname为小波基名称。
函数返回小波系数C和长度向量L。
4. 去除小波系数中的噪声根据小波分解得到的小波系数,可以利用MATLAB中的过滤函数对小波系数进行去噪。
常用的去噪方法包括阈值去噪、软硬阈值去噪等。
这些方法可以有效地去除信号中的噪声成分,得到干净的信号。
5. 重构信号经过去噪处理后,可以使用MATLAB中的waverec函数对去噪后的小波系数进行重构,得到去噪后的信号。
该函数的调用形式为X = waverec(C, L, wname),其中C为去噪后的小波系数,L为长度向量,wname为小波基名称。
6. 可视化和分析可以利用MATLAB中丰富的绘图函数对去噪前后的信号进行可视化比较,以及对去噪效果进行分析。
通过比较原始信号和去噪后的信号,可以直观地了解去噪效果,并进行进一步的分析和处理。
通过以上步骤,我们可以在MATLAB中对一维数据进行小波去噪处理,去除信号中的噪声成分,得到干净的信号。
小波去噪是一种简单而有效的信号处理方法,在实际应用中具有广泛的应用前景。
matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。
在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。
本文将介绍Matlab中的11种数字信号滤波去噪算法。
1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。
它适用于高斯噪声和椒盐噪声的去除。
2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。
它适用于椒盐噪声的去除。
3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。
它适用于高斯噪声的去除。
4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。
它适用于高斯噪声的去除。
5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。
它适用于非线性噪声的去除。
6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。
它适用于各种类型的噪声的去除。
7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。
它适用于线性系统的去噪。
8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。
它适用于非线性系统的去噪。
9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。
它适用于平稳信号的去噪。
10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
以上是Matlab中的11种数字信号滤波去噪算法。
每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。
Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。
通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。
小波变换去噪matlab源码小波变换是一种广泛应用于信号处理和图像处理的技术。
它通过将信号分解成不同频率的子信号,从而提供了一种有效的降噪方法。
要在MATLAB中进行小波变换去噪,您可以使用MATLAB的信号处理工具箱中提供的函数。
下面是一个示例的MATLAB源代码,用于实现小波变换去噪:```MATLAB% 加载待处理的信号signal = load('input_signal.mat');% 设置小波函数和分解层数wavelet = 'db4'; % 使用 Daubechies 4 小波函数level = 5; % 设置分解层数% 执行小波变换[coefficients, levels] = wavedec(signal, level, wavelet);% 通过阈值处理降噪threshold = wthrmngr('dw2ddenoLVL', coefficients, levels);cleaned_coefficients = wthresh(coefficients, 'h', threshold);denoised_signal = waverec(cleaned_coefficients, levels, wavelet);% 显示和保存降噪后的信号plot(denoised_signal);save('denoised_signal.mat', 'denoised_signal');```这段代码首先加载了待处理的信号,然后定义了所使用的小波函数和分解层数。
接下来,它执行了小波变换,并通过阈值处理来降噪信号。
最后,代码显示了降噪后的信号,并将其保存到文件中。
值得注意的是,该示例中使用了默认的阈值选取方式(dw2ddenoLVL),您可以根据具体的应用场景选择适合的阈值选取方法。
以上是关于在MATLAB中使用小波变换进行信号去噪的简单示例代码。
二维小波阈值去噪matlab-概述说明以及解释1.引言1.1 概述概述:二维小波阈值去噪是一种常用的信号处理技术,用于降低信号中的噪声干扰以及提高信号的质量和清晰度。
通过对信号进行二维小波变换和阈值处理,可以有效地去除信号中的噪声成分,保留信号的重要信息。
在本文中,我们将介绍二维小波变换的原理和小波阈值去噪的方法,以及在MATLAB环境下的实现过程。
通过对实验结果的分析和展望,我们可以看到二维小波阈值去噪在信号处理中的广泛应用前景,帮助读者更好地理解和掌握这一重要技术。
1.2 文章结构本文将分为引言、正文和结论三个部分来展开讨论。
在引言部分,将会对二维小波阈值去噪这一主题进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍二维小波变换的原理,小波阈值去噪的方法以及在MATLAB中如何实现小波去噪。
最后,在结论部分,将对实验结果进行分析,展望二维小波阈值去噪在未来的应用前景,并对全文进行总结。
通过这样的结构安排,读者将能够全面了解二维小波阈值去噪的相关知识,深入掌握该领域的核心概念和技术方法。
1.3 目的本文旨在介绍二维小波阈值去噪方法在信号处理领域中的应用。
通过对二维小波变换原理和小波阈值去噪方法的介绍,以及在MATLAB中的具体实现,旨在帮助读者深入了解该技术在信号处理中的重要性和实用性。
通过实验结果分析和应用前景展望,希望读者能够对二维小波阈值去噪方法有更深入的理解,并为其在实际应用中提供参考和指导。
最终,通过总结本文的内容,读者将能够对二维小波阈值去噪方法有一个全面的认识,为进一步的研究和应用提供基础和启发。
2.正文2.1 二维小波变换原理在信号处理领域,小波变换是一种用于分析信号频谱和时域特征的强大工具。
与傅里叶变换不同,小波变换具有良好的时频局部化性质,能够在时域和频域上同时提供精确的信息。
在图像处理中,我们通常使用二维小波变换来分析和处理图像信号。
二维小波变换将图像信号分解为不同尺度和方向上的小波系数。
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
Matlab在图像去噪与去模糊中的应用技巧引言:随着数码相机的普及与发展,人们越来越容易获取高质量的图像。
然而,在实际应用中,我们常常会遇到图像噪声和模糊的问题。
这些问题严重影响了图像的质量和可用性,因此,图像的去噪与去模糊成为了研究与应用中的重要内容。
Matlab作为一种强大的科学计算软件,提供了丰富的图像处理工具箱,为我们提供了解决这些问题的便利。
一、图像去噪技术1.1 经典去噪算法图像去噪是指通过一系列的算法和处理方法,从受到噪声干扰的图像中恢复出原始图像的过程。
经典的图像去噪算法包括均值滤波、中值滤波和高斯滤波等。
这些算法基于不同的原理,可以根据具体的需求选择合适的算法。
均值滤波是一种最简单的去噪算法,它将图像中每个像素的灰度值替换为该像素周围邻域的平均灰度值。
在Matlab中,我们可以使用函数`imfilter`来实现均值滤波。
中值滤波是基于排序的一种去噪算法,它将图像中每个像素的灰度值替换为该像素周围邻域的中值。
相比于均值滤波,中值滤波能够更好地保留图像的边缘信息。
在Matlab中,我们可以使用函数`medfilt2`来实现中值滤波。
高斯滤波是一种基于加权平均的去噪算法,它将图像中每个像素的灰度值替换为该像素周围邻域的加权平均灰度值,其中权值是一个符合高斯分布的函数。
在Matlab中,我们可以使用函数`imgaussfilt`来实现高斯滤波。
1.2 基于分析方法的去噪算法除了经典的去噪算法之外,还有一些基于分析方法的算法被广泛应用于图像去噪中。
这些算法常常利用图像的统计特性进行分析,并采取相应的数学模型和算法进行处理。
小波去噪是一种基于小波变换的去噪算法,它利用小波基函数进行频域变换,并通过选择适当的阈值对小波系数进行处理。
在Matlab中,我们可以使用函数`wdenoise`来实现小波去噪。
偏微分方程去噪算法是一种基于偏微分方程的图像去噪方法,它将图像看作是一个动态系统,并通过迭代求解偏微分方程来恢复图像的原始信息。
% Function to calculate Threshold for BayesShrinkfunction threshold=bayes(X,sigmahat)len=length(X);sigmay2=sum(X.^2)/len;sigmax=sqrt(max(sigmay2-sigmahat^2,0));if sigmax==0 threshold=max(abs(X));else threshold=sigmahat^2/sigmax;endfunction rmse=compare11(f1,f2,scale) %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error(nargchk(2,3,nargin));if nargin<3scale=1;end%%%%%%%%%%%%%%%%%compute the root mean square errore=double(f1)-double(f2);[m,n]=size(e);rmse=sqrt(sum(e(:).^2)/(m*n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%if rmse%%%%%%%%%%%%%%%%%emax=max(abs(e(:)));[h,x]=hist(e(:),emax);if length(h)>=1%figure,bar(x,h,'k');%%%%%%%%%%%%%%%%%%%emax=emax/scale;e=mat2gray(e,[-emax, emax]);%figure;imshow(e);endend%% JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY%%%%clear;clc;clear all;close all;display(' ');display(' ');display(' ');display(' SOME EXPERIMENTS ON IMAGE DENOISING USING WAVELETS ');display(' ');display(' ');display(' RAJA RAO ');display(' ');display(' ');display('select the image');display(' 1:lena.png');display(' 2:barbara.png');display(' 3:boat.png');display(' 4:house.png');display(' 5:peppers256.png');display(' 6:cameraman.jpg');display(' ');display(' 7:hyderabad.png');display(' 8:friendgray.jpg');display(' ');ss1=input('enter your choice: ');switch ss1case 1f=imread('lena.png');%f=imread('babu.jpg');case 2f=imread('barbara.png');case 3f=imread('boat.png');case 4f=imread('house.png');case 5f=imread('peppers256.png');case 6f=imread('cameraman.jpg');case 7f=imread('hyderabad512.png');case 8f=imread('friendgray.jpg');endsubplot(2,2,1), imshow(f);title('original image');display('enter the type of noise:');display(' 1 for salt & pepper');display(' 2 for gaussian');display(' 3 for poisson');display(' 4 for speckle');ud=input('enter the value:');switch udcase 1display('enter the % of noise(Ex:0.2)');ud1=input('pls enter: ');g=imnoise(f,'salt & pepper',ud1);case 2%f=imread('peppers256.png');%subplot(2,2,1),imshow(f);display('enter the noise varience: ');va=input('enter between 0.01 to 0.09: ');g=imnoise(f,'gaussian',0,va);case 3% display('enter the % of noise(Ex:0.2)');%ud1=input('pls enter: ');g=imnoise(f,'poisson');case 4display('enter the varience of noise(Ex:0.02)');ud1=input('pls enter: ');g=imnoise(f,'speckle',ud1);end%g=imnoise(f,'salt & pepper',01);subplot(2,2,2),imshow(g);title('noisy image');%[ca,ch,cv,cd] = dwt2(g,'db2');%c=[ca ch;cv cd];%subplot(2,2,3),imshow(uint8(c));x=g;% Use wdencmp for image de-noising.% find default values (see ddencmp). [thr,sorh,keepapp] = ddencmp('den','wv',x); display('');display('select wavelet');display('enter 1 for haar wavelet');display('enter 2 for db2 wavelet');display('enter 3 for db4 wavelet');display('enter 4 for sym wavelet');display('enter 5 for sym wavelet');display('enter 6 for bior wavelet');display('enter 7 for bior wavelet');display('enter 8 for mexh wavelet'); display('enter 9 for coif wavelet'); display('enter 10 for meyr wavelet'); display('enter 11 for morl wavelet'); display('enter 12 for rbio wavelet'); display('press any key to quit');display('');ww=input('enter your choice: '); switch wwcase 1wv='haar';case 2wv='db2';case 3wv='db4' ;case 4wv='sym2'case 5wv='sym4';case 6wv='bior1.1';case 7wv='bior6.8';case 8wv='mexh';case 9wv='coif5';case 10wv='dmey';case 11wv='mor1';case 12wv='jpeg9.7';otherwisequit;enddisplay('');display('enter 1 for soft thresholding');display('enter 2 for hard thresholding');display('enter 3 for bayes soft thresholding');sorh=input('sorh: ');display('enter the level of decomposition');level=input(' enter 1 or 2 : ');switch sorhcase 1sorh='s';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 2sorh='h';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 3%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;%clc;%Denoising using Bayes soft thresholding%Note: Figure window 1 displays the original image, fig 2 the noisy img%fig 3 denoised img by bayes soft thresholding%Reading the image%pic=imread('elaine','png');pic=f;%figure, imagesc(pic);colormap(gray);%Define the Noise Variance and adding Gaussian noise%While using 'imnoise' the pixel values(0 to 255) are converted to double in the range 0 to 1 %So variance also has to be suitably convertedsig=15;V=(sig/256)^2;npic=g;%npic=imnoise(pic,'gaussian',0,V);%figure, imagesc(npic);colormap(gray);%Define the type of wavelet(filterbank) used and the number of scales in the wavelet decomp filtertype=wv;levels=level;%Doing the wavelet decomposition[C,S]=wavedec2(npic,levels,filtertype);st=(S(1,1)^2)+1;bayesC=[C(1:st-1),zeros(1,length(st:1:length(C)))];var=length(C)-S(size(S,1)-1,1)^2+1;%Calculating sigmahatsigmahat=median(abs(C(var:length(C))))/0.6745;for jj=2:size(S,1)-1%for the H detail coefficientscoefh=C(st:st+S(jj,1)^2-1);thr=bayes(coefh,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefh,thr);st=st+S(jj,1)^2;% for the V detail coefficientscoefv=C(st:st+S(jj,1)^2-1);thr=bayes(coefv,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefv,thr);st=st+S(jj,1)^2;%for Diag detail coefficientscoefd=C(st:st+S(jj,1)^2-1);thr=bayes(coefd,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefd,thr);st=st+S(jj,1)^2;end%Reconstructing the image from the Bayes-thresholded wavelet coefficientsbayespic=waverec2(bayesC,S,filtertype);xd=bayespic;%Displaying the Bayes-denoised image%figure, imagesc(uint8(bayespic));colormap(gray);display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000');display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000'); display('Adaptive Wavelet Thresholding for Image Denoising and Compression');display('S. Grace Chang, Student Member, IEEE, Bin Yu, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE');%%%%%%%%%%%%%%%%%%%%%%%%%%end%sorh=sorh;% de-noise image using global thresholding option.%f=imread('peppers256.png');[c,s]=wavefast(g,level,wv);subplot(2,2,3),wave2gray(c,s,8);title('decomposed structure');subplot(2,2,4),xd=uint8(xd);imshow(xd);title('denoised image');%subplot(2,2,4),sub=f-xd;%sub=abs(1.2*sub);%imshow(im2uint8(sub));title('difference image');ff=im2double(f);xdd=im2double(xd);display(' ');display(' ');display('reference: To calcullate signal to noise ratio');display('Makoto Miyahara');display('"Objective Picture Quality Scale (PQS) for Image Coding"'); display('IEEE Trans. on Comm., Vol 46, No.9, 1998.');display(' ');display(' ');snr=wpsnr(ff,xdd)display(' ');display(' ');mse=compare11(ff,xdd)function op=sthresh(X,T);%A function to perform soft thresholding on a%given an input vector X with a given threshold T% S=sthresh(X,T);ind=find(abs(X)<=T);ind1=find(abs(X)>T);X(ind)=0;X(ind1)=sign(X(ind1)).*(abs(X(ind1))-T);op=X;。
MATLAB中实现阈值获取的函数有ddencmp、thselect、wbmpen和wwdcbm,下面对它们的用法进行简单的说明。
ddencmp的调用格式有以下三种:(1)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,IN2,X)(2)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wp',X)(3)[THR,SORH,KEEPAPP,CRIT]=ddencmp(IN1,'wv',X)函数ddencmp用于获取信号在消噪或压缩过程中的默认阈值。
输入参数X为一维或二维信号;IN1取值为'den'或'cmp','den'表示进行去噪,'cmp'表示进行压缩;IN2取值为'wv'或'wp',wv表示选择小波,wp表示选择小波包。
返回值THR是返回的阈值;SORH是软阈值或硬阈值选择参数;KEEPAPP表示保存低频信号;CRIT是熵名(只在选择小波包时使用)。
函数thselect的调用格式如下:THR=thselect(X,TPTR);THR=thselect(X,TPTR)根据字符串TPTR定义的阈值选择规则来选择信号X的自适应阈值。
自适应阈值的选择规则包括以下四种:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。
*TPTR='heursure',使用启发式阈值选择。
*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。
阈值选择规则基于模型y = f(t) + e,e是高斯白噪声N(0,1)。
函数wbmpen的调用格式如下:THR=wbmpen(C,L,SIGMA,ALPHA);THR=wbmpen(C,L,SIGMA,ALPHA)返回去噪的全局阈值THR。
THR通过给定的一种小波系数选择规则计算得到,小波系数选择规则使用Birge-Massart的处罚算法。
{C,L]是进行去噪的信号或图像的小波分解结构;SIGMA是零均值的高斯白噪声的标准偏差;ALPHA是用于处罚的调整参数,它必须是一个大于1的实数,一般去ALPHA=2。
设t*使crit(t)=-sum(c(k)^2,k<=t) + 2 *SIGMA^2 * t*(ALPHA+log(n/t))的最小值,其中c(k)是按绝对值从大到小排列的小波包系数,n是系数的个数,则THR=|c(t*)|。
wbmpen(C,L,SIGMA,ALPHA,ARG)计算阈值并画出三条曲线。
2 * SIGMA^2 * t*(ALPHA+log(n/t))sum(c(k)^2, k<=t)crit(t)wdcbm的调用格式有以下两种:(1)[THR,NKEEP]=wdcbm(C,L,ALPHA);(2)[THR,NKEEP]=wdcbm(C,L,ALPHA,M);函数wdcbm是使用Birge-Massart算法获取一维小波变换的阈值。
返回值THR是与尺度无关的阈值,NKEEP是系数的个数。
[C,L]是要进行压缩或消噪的信号在j=length(L)-2层的分解结构;LAPHA和M必须是大于1的实数;THR是关于j的向量,THR(i)是第i层的阈值;NKEEP也是关于j的向量,NKEEP(i)是第i层的系数个数。
一般压缩时ALPHA取1.5,去噪时ALPHA取3.2.信号的阈值去噪MATLAB中实现信号的阈值去噪的函数有wden、wdencmp、wthresh、wthcoef、wpthcoef以及wpdencmp。
下面对它们的用法作简单的介绍。
函数wden的调用格式有以下两种:(1)[XD,CXD,LXD]=wden(X,TPTR,SORH,SCAL,N,'wname')(2)[XD,CXD,LXD]=wden(C,L,TPTR,SORH,SCAL,N,'wname') 函数wden用于一维信号的自动消噪。
X为原始信号,[C,L]为信号的小波分解,N为小波分解的层数。
THR为阈值选择规则:*TPTR='rigrsure',自适应阈值选择使用Stein的无偏风险估计原理。
*TPTR='heursure',使用启发式阈值选择。
*TPTR='sqtwolog',阈值等于sqrt(2*log(length(X))).*TPTR='minimaxi',用极大极小原理选择阈值。
SORH是软阈值或硬阈值的选择(分别对应's'和'h')。
SCAL指所使用的阈值是否需要重新调整,包含下面三种:*SCAL='one' 不调整;*SCAL='sln' 根据第一层的系数进行噪声层的估计来调整阈值。
*SCAL='mln' 根据不同的噪声估计来调整阈值。
XD为消噪后的信号,[CXD,LXD]为消噪后信号的小波分解结构。
格式(1)返回对信号X经过N层分解后的小波系数进行阈值处理后的消噪信号XD和信号XD的小波分解结构[CXD,LXD]。
格式(2)返回参数与格式(1)相同,但其结构是由直接对信号的小波分解结构[C,L]进行阈值处理得到的。
函数wdencmp的调用格式有以下三种:(1)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('gbl',X,'wname',N,TH TR,SORH,KEEPAPP);(2)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',X,'wname',N,TH TR,SORH);(3)[XC,CXC,LXC,PERF0,PERFL2]=wdencmp('lvd',C,L,'wname',N, THTR,SORH);函数wdencmp用于一维或二维信号的消噪或压缩。
wname是所用的小波函数,gbl(global的缩写)表示每一层都采用同一个阈值进行处理,lvd表示每层采用不同的阈值进行处理,N表示小波分解的层数,THR为阈值向量,对于格式(2)和(3)每层都要求有一个阈值,因此阈值向量THR的长度为N,SORH表示选择软阈值或硬阈值(分别取值为's'和'h'),参数KEEPAPP取值为1时,则低频系数不进行阈值量化,反之,低频系数要进行阈值量化。
XC是要进行消噪或压缩的信号,[CXC,LXC]是XC的小波分解结构,PERF0和PERFL2是恢复或压缩L^2的范数百分比。
如果[C,L]是X的小波分解结构,则PERFL2=100*(CXC向量的范数/C向量的范数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100||XC||^2/||X||^2。
函数wthresh的调用格式如下:Y=wthresh(X,SORH,T)Y=wthresh(X,SORH,T) 返回输入向量或矩阵X经过软阈值(如果SORH='s')或硬阈值(如果SORH='h')处理后的信号。
T是阈值。
Y=wthresh(X,'s',T)返回的是Y=SIG(X)*(|X|-T)+,即把信号的绝对值与阈值进行比较,小于或等于阈值的点变为零,大于阈值的点为该点值与阈值的差值。
Y=wthresh(X,'h',T)返回的是Y=X*1(|X|>T),即把信号的绝对值和阈值进行比较,小于或等于阈值的点变为零,大于阈值的点保持不变。
一般来说,用硬阈值处理后的信号比用软阈值处理后的信号更粗糙。
函数wthcoef的调用格式下面四种:(1)NC=wthcoef('d',C,L,N,P)(2)NC=wthcoef('d',C,L,N)(3)NC=wthcoef('a',C,L)(4)NC=wthcoef('t',C,L,N,T,SORH)函数wthcoef用于一维信号小波系数的阈值处理。
格式(1)返回小波分解结构[C,L]经向量N和P定义的压缩率处理后的新的小波分解向量NC,[NC,L]构成一个新的小波分解结构。
N包含被压缩的细节向量,P是把较小系数置0的百分比信息的向量。
N和P 的长度必须相同,向量N必须满足1<=N(i)<=length(L)-2。
格式(2)返回小波分解结构[C,L]经过向量N中指定的细节系数置0后的小波分解向量NC。
格式(3)返回小波分解结构[C,L]经过近似系数置0后的小波分解向量NC。
格式(4)返回小波分解结构[C,L]经过将向量N作阈值处理后的小波分解向量NC。
如果SORH=’s‘,则为软阈值;如果SORH='h'则为硬阈值。
N包含细节的尺度向量,T是N相对应的阈值向量。
N和T的长度必须相等。
函数wpdencmp的调用格式有以下两种:(1)[XD,TREED,PERF0,PERFL2]=wpdencmp(X,SORH,N,'wname',CRIT, PAR,KEEPAPP)(2)[XD,TREED,PERF0,PERFL2]=wpdencmp(TREE,SORH,CRIT,PAR,K EEPAPP)函数wpdencmp用于使用小波包变换进行信号的压缩或去噪。
格式(1)返回输入信号X(一维或二维)的去噪或压缩后的信号XD。
输出参数TREED是XD的最佳小波包分解树;PERFL2和PERF0是恢复和压缩L2的能量百分比。
PERFL2=100*(X的小波包系数范数/X 的小波包系数)^2;如果X是一维信号,小波wname是一个正交小波,则PERFL2=100*||XD||^2/||X||^2。
SORH的取值为's'或'h',表示的是软阈值或硬阈值。
输入参数N是小波包的分解层数,wname是包含小波名的字符串。
函数使用由字符串CRIT定义的熵和阈值参数PAR实现最佳分解。
如果KEEPAPP=1,则近似信号的小波系数不进行阈值量化;否则,进行阈值量化。
格式(2)与格式(1)的输出参数相同,输入选项也相同,只是它从信号的小波包分解树TREE进行去噪或压缩。