小学数学分数裂项(20210723004735)
- 格式:doc
- 大小:1.08 MB
- 文档页数:14
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
本講知識點屬於計算大板塊內容,其實分數裂項很大程度上是發現規律、利用公式的過程,可以分為觀察、改造、運用公式等過程。
很多時候裂項的方式不易找到,需要進行適當的變形,或者先進行一部分運算,使其變得更加簡單明瞭。
本講是整個奧數知識體系中的一個精華部分,列項與通項歸納是密不可分的,所以先找通項是裂項的前提,是能力的體現,對學生要求較高。
分數裂項一、“裂差”型運算將算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.裂項分為分數裂項和整數裂項,常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關係,找出共有部分,裂項的題目無需複雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)對於分母可以寫作兩個因數乘積的分數,即1a b⨯形式的,這裏我們把較小的數寫在前面,即a b <,那麼有1111()a b b a a b=-⨯- 知識點撥教學目標分數裂項計算(2)對於分母上為3個或4個連續自然數乘積形式的分數,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我們有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂項的三大關鍵特徵:(1)分子全部相同,最簡單形式為都是1的,複雜形式可為都是x(x 為任意自然數)的,但是只要將x 提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數“首尾相接”(3)分母上幾個因數間的差是一個定值。
二、“裂和”型運算:常見的裂和型運算主要有以下兩種形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型運算與裂差型運算的對比:裂差型運算的核心環節是“兩兩抵消達到簡化的目的”,裂和型運算的題目不僅有“兩兩抵消”型的,同時還有轉化為“分數湊整”型的,以達到簡化目的。
分数裂项本课将学习通过巧妙的计算将题目变简(一)分数裂差:1丶直接裂差:形如ba b a a b a b b a a b 11--=⨯⨯=⨯-此时,不难发现,当分母为两个数的乘积,分子正好为这两个数的差值时,可以将这个数裂为两个数作差(后面简称裂差).2丶间接裂差:形如)(ba abc b a a b a b c b a c b a c 111-⨯-=⨯-⨯-=-⨯=⨯此时,不难发现,当此时分子并不为分母两数差值时,也可以裂项,不过此时会多了一个系数a b c-3丶多数裂差:形如ba b a c b a a c b a c c b a a c ⨯⨯=⨯⨯⨯⨯=⨯⨯-1-1-此时,不难发现,当此时分母不为两数乘积时,也可裂和,两数裂成1个1个的作差,三数裂成两个两个的作差,同理多数,且此时差值由大减小决定(二)分数裂和:4丶裂和:形如ba b a a b a b b a a b 11+=⨯+⨯=⨯+当分母为两个数的乘积,分子正好为这两个数的和,这类型的数,可以直接裂和(三)平方差公式:()()22b a b a b a -=-+(四)思路剖析:5丶首先得明白这类型题的一个考察形式,目的就是让我们分数间相互抵消,或者相互凑整.6丶口诀:①:连加连减必裂差②:加减混合必裂和③:连乘必定会约分例题一:(1)3130130291131211211111101⨯+⨯++⨯+⨯+⨯ (2)5614213012011216121++++++例题二:10098398963863643423⨯+⨯++⨯+⨯+⨯ 例题三:1009799981079874654132⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题四:12200720083420092010200620072008200820092010200720082009201020082010⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯⨯+⨯⨯+例题五:10099981543143213211⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题六:101100991543974329832199⨯⨯++⨯⨯+⨯⨯+⨯⨯ 例题七:10432994328432332211⨯⨯⨯⨯+⨯⨯⨯⨯++⨯⨯+⨯+ 例题八:)()(999819776135493251011-515019831992101011⨯++⨯+⨯+⨯⨯⨯++⨯+⨯+⨯自我巩固巩固一:871761651541431321211⨯+⨯+⨯+⨯+⨯+⨯+⨯巩固二:56174216301520141213612211++++++巩固三:101982141121182852⨯++⨯+⨯+⨯ 巩固四:22122166161151174743422211+⨯+⨯+⨯+⨯+⨯+⨯巩固五:103211432113211211++++++++++++++ 巩固六:2019201943433232212122222222⨯+++⨯++⨯++⨯+ 巩固七:12959697459899100959697989910096979910097100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯⨯+⨯⨯+ 巩固八:)()()()(10219211043213214)321()21(3++⨯++++++++⨯+++++⨯+拓展练习拓展一:1311241192097167512538314⨯-⨯+⨯-⨯+⨯-⨯拓展二:11010990897271565542413029201912116521+++++++++拓展三:)()()(())()(())((20171141131121120171411311211413112113121121++++++++++++++ 拓展四:120171201712015120151717151513132222222222-++-+++-++-++-+拓展五:(21191727532531219172752532311114382⨯⨯++⨯⨯+⨯⨯-⨯++⨯+⨯+⨯ 拓展六:10981943273215⨯⨯++⨯⨯+⨯⨯ 拓展七:272624231986517643154211⨯⨯⨯++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯。
分数裂项六种题型一、整数裂项整数裂项是一种常见的数学问题,通过将整数拆分成两个整数之和或之差,从而简化计算或证明某些数学关系式。
以下是一些常见的整数裂项例子:1.将整数拆分成两个相邻整数之和或之差,例如:5=2+3,10=3+7。
2.将整数拆分成两个绝对值相等的数之和或之差,例如:10=3+(-3),20=7+(-7)。
二、分数裂项分数裂项是将分数拆分成两个或多个分数的和或差,以便于计算或证明某些数学关系式。
以下是一些常见的分数裂项例子:1.将分数拆分成两个同分母的分数的和或差,例如:1/2=1/(4)+1/(4),2/3=1/(3)+1/(3)。
2.将分数拆分成两个异分母的分数的和或差,例如:2/5=3/(15)+(-4)/(15),4/7=3/(21)+4/(21)。
三、混合数裂项混合数裂项是指将整数、分数等不同类型的数拆分成两个或多个数之和或差。
以下是一些常见的混合数裂项例子:1.将混合数拆分成一个整数和一个分数的和或差,例如:3/2=2+(1/2),5=3+(2/2)。
2.将混合数拆分成两个分数之和或差,例如:4/3=1/(2)+3/(4),7/6=1/(3)+1/(2)。
四、裂项相消法裂项相消法是一种常见的数学方法,用于简化分数的计算。
其基本思想是将一个分数拆分成两个或多个分数的和或差,以便于约简分数。
以下是一个裂项相消法的例子:求和:1/2+1/6+1/12+1/20+...的值。
解答:原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...通过约简,我们得到原式=1-1/n(当n趋于无穷大时)。
五、分式裂项相消法分式裂项相消法是一种将分式拆分成多个分式的和或差,然后约简的方法。
以下是一个分式裂项相消法的例子:求分式:(a^2-b^2)/(a^2+b^2)的值。
解答:原式=(a^2-b^2)/(a^2+b^2)=(a-b)(a+b)/(a^2+b^2)=(a-b)/(a+b)+(a+b) /(a-b)。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数的裂项公式分数的裂项公式是一种重要的数学公式,它可以将一个分数拆分成若干个分数的和,从而简化计算。
在学习和应用该公式时,需要理解其基本概念,掌握运用技巧,并注意一些常见的注意事项。
首先,我们来看一下裂项公式的基本概念。
裂项公式是指,对于任意一个分数a/b,可以将其拆分成若干个形如c/d的分数之和,即:a/b = c1/d1 + c2/d2 + … + cn/dn其中,c1、c2、…、cn和d1、d2、…、dn分别为分子和分母,它们满足以下条件:1. 所有的ci和di都应为正整数;2. 分子和分母的最大公约数为1,即gcd(ci, di) = 1;3. 所有的di均不为0。
其次,我们来讨论一下裂项公式的运用技巧。
在实际应用中,我们通常根据分母的因数来分解分数,具体步骤如下:1. 对于分数a/b,我们先找出它的一组互质的分母d1、d2、…、dn,使得d1 × d2 × … × dn = b;2. 根据这组分母,我们分别将a/b表示成如下形式:a/b = (a × d1)/(b × d1) + (a × d2)/(b × d2) + … + (a × dn)/(b × dn)3. 然后,我们对每个拆分分数进行简化,即求出它们的最简形式;4. 最后,将这些最简形式的分数相加,得到a/b的裂项表达式。
需要指出的是,裂项公式的应用不仅局限于分式的计算,还可以在一些数学问题中起到很好的辅助作用。
例如,在求解一些无理数的连分数表示时,就可以利用裂项公式将无理数拆分成分数的和,进而得到连分数的展开式。
最后,我们来谈一谈在应用裂项公式时需要注意的一些事项。
首先,要保证拆分的所有分数都是正整数,而且每个分数的分母都不为0。
其次,为了简化计算,应该选择一个合适的分母进行拆分,以尽量减小后续计算的难度和错误率。
此外,在进行裂项计算时,还应避免因未简化分数而造成计算错误,以及注意计算结果的范围是否正确。
第1讲 分数的裂项(裂差)【内容综述】在分数裂项中可能用到整数的裂项公式,如:1)1+2+3+⋯+n =()12n n +; 2)1⨯2+2⨯3+⋯+n ⨯(n +1)=()()123n n n ++; 3)1⨯2⨯3+2⨯3⨯4+⋯+n ⨯(n +1)⨯(n +2)=()()()1234n n n n +++; 4)1⨯n +2⨯(n -1)+3⨯(n -2)+⋯+(n -1)⨯2+n ⨯1=()()126n n n ++; 5)()()()()222222+12+224626n n n n ⨯⨯++++= ;(n 为偶数) 6)()()()22222122+1135216n n n n -⨯⨯++++-= ;(n 为奇数) 7)2222123n ++++ =()()1216n n n ++; 8)3333123n ++++ =()2123n ++++ =()2214n n +; 这节课我们学习分数的裂项——裂差,这种方法是分数多项计算常用方法,我们的目的能够达到下面的“咔咔算式”:(中间项可以咔咔抵消,剩下首尾有限项的算式命名为“咔咔算式”)11111111111223341n n n n n--+-+-++-=-=- 裂差口诀:连加必裂差,裂差变咔咔,采用“撕分母”的方法.11b a a b a b -=-⨯,()11111n n n n =-++,()1111n n p p n n p ⎛⎫=- ⎪++⎝⎭. 例1. 计算:111112233499100++++⨯⨯⨯⨯ =________; 【分析】整体共99个分数相加,不可能去通分,又是连加的形式,利用裂差变为咔咔算式.【解答】原式=1111111112233499100-+-+-++- =111100-=99100【评注】同学们一定记住这个算式的方法和结果,好多题目都可以变成这个结构哦!例2. 计算:123101224474656++++⨯⨯⨯⨯ =_______; 【分析】本题的分子虽然不同,但都恰好是分母中两个因数之差,仍然可以采用裂差法解题.【解答】原式=21427456461224474656----++++⨯⨯⨯⨯ =111111111224474656-+-+-++- =11156- =5556【评注】在分数裂差中,注意一定要把分子变成分母两个分数的之差,这时候大胆去“撕分母”,就可以得到咔咔算式的效果.例3. 计算:1111255881198101++++⨯⨯⨯⨯ =__________; 【分析】整体共49个分数连加,分母中两个因数之差都是3,可以提取13,然后裂差吧. 【解答】原式=133333255881198101⎛⎫++++ ⎪⨯⨯⨯⨯⎝⎭=1111111113255881198101⎛⎫-+-+-++- ⎪⎝⎭=11132101⎛⎫- ⎪⎝⎭=33202【评注】如果分子不是分母两个因数之差,一定先通过扩倍变成裂项公式的条件,然后才可以去裂项.例4. 计算:11111353575799799101++++⨯⨯⨯⨯⨯⨯⨯⨯ =_________; 【分析】整体连加,且每个分母都是三个因数,不用裂差为三个分数,请你仔细观察,相邻两个分数的分母有哪些公共的因数,把公共的因数作为裂差后的分母,就到达咔咔算式的目的啦,本题应该先把分子都变为4,才可以撕分母,想想为什么?【解答】原式=1111111114133535575779979999101⎛⎫-+-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭=11141399101⎛⎫- ⎪⨯⨯⎝⎭=8339999【评注】如果分母是三个因数的乘积,可以裂差:11(2)111(1)(2)2(1)(2)2(1)(1)(2)n n n n n n n n n n n n ⎛⎫+-=⨯=⨯- ⎪⨯+⨯+⨯+⨯+⨯++⨯+⎝⎭; ()()11()()111()2()2()()n p n p n p n n p p n p n n p p n p n n n p ⎛⎫+--=⨯=⨯- ⎪-⨯⨯+-⨯⨯+-⨯⨯+⎝⎭.同学们不妨记住两个分数裂差公式:1)1111122334(1)1n n n n ++++=⨯⨯⨯⨯++ ; 2)111111112323434(1)(2)22(1)(52)n n n n n ⎛⎫++++=- ⎪⨯⨯⨯⨯⨯⨯⨯+⨯++⨯+⎝⎭ .例5. 计算:11111121231234123100+++++++++++++++ =_________; 【分析】分母先使用公式:1+2+3+⋯+n =()12n n +,尽量不要约去分母中的2,分母就是分数裂项的敏感数列:1⨯2,2⨯3,3⨯4,4⨯6,……,可以直接裂项了.【解答】原式=11111251223103441001⎛⎫+++++ ⎪⨯⨯⨯⨯⨯⎝⎭=101121⎛⎫- ⎪⎝⎭=200101【评注】如果在连加的算式中,如果能使用公式的,尽量使用公式,相同位置上的数才可以约分,否则可以找不到规律.例6. 计算:222222221223342012016122334201201556++++++++⨯⨯⨯⨯ =__________; 【分析】当你找不到解题方法的时候,不妨具体算出每个加数的大小,如果发现是假分数,最好化成带分数,以便,整数部分和小数部分分别计算.【解答】原式=1111222212233420120165⎛⎫⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭(共2015项) =11112201122334201552016⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝+⎭ =1403012016⎛⎫- ⎪⎝⎭+ =201540302016【评注】一般地,2222222(1)212()111122(1)(1)1n n n n n n n n n n n n n n n n n +++++++===+=+-+++++,抱定必是裂差的思路,再次提醒大家:分数裂差分子一定是分母中两个因数之差才能顺利撕分母哦.同时裂差法不单单只用于分数的连加裂项,也适用于整数的裂项,以及分数的特殊裂项,如1)1+2+3+4+⋯+100(使用裂差法)=_________;(提示:(1)(1)2n n n n n +--=) 2)232012222+++++ (使用裂差法)=_________;(提示:2n n n =-)3)1239121231234123410++++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ =_________;(提示:1111123123123(1)!!n n n n n n n -=-=-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯- )【练习题】1. 计算:11111223344950++++⨯⨯⨯⨯ =__________;2. 计算:1111144771097100++++⨯⨯⨯⨯ =__________;3. 计算:()()()()()2310011212123129912100+++⨯++⨯+++++⨯+++ =__________;4. 计算:2341011212231223341223100101++++⨯⨯+⨯⨯+⨯+⨯⨯+⨯++⨯ =__________;5. 计算:()()()()22221223349910012233499100++++++++⨯⨯⨯⨯ =__________;【参考答案】1、4950; 2、33100; 3、50495050;、 4、27573434; 5、99396100;。
分数裂差考试要求( 1)灵巧运用分数裂差计算惯例型分数裂差乞降( 2)能经过变型进行复杂型分数裂差计算乞降知识构造一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法 .裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。
碰到裂项的计算题时,要认真的察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相像部分,让它们消去才是最根本的。
1、关于分母能够写作两个因数乘积的分数,即 1 形式的,这里我们把较小的数写在前面,即 a b ,ba那么有 1b 1 (11 )a b a a b2、关于分母上为 3 个或 4 个自然数乘积形式的分数,我们有:1 1 [ 1 1 ]n (n k ) ( n 2k) 2k n (n k ) ( n k)( n 2k )1(n 1 [ 12k ) (n1 ]n (n k ) ( n 2k) 3k) 3k n (n k) ( n k) ( n 2k ) (n 3k)3、关于分子不是 1k 1 1 的状况我们有:k) n n kn(nh h 1 1n n k k n n k2k1 1n n k n 2k n n k n k n 2k3k1 1n n k n 2k n 3k n n k n 2k n k n 2k n 3kh h1 1n n k n 2k2k n n k n k n 2kh h1 1n n k n 2k n 3k3k n n k n 2k n k n 2k n 3k21 1 12n2n 1 2n 1 12n 1 2n 12二、裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将x 提拿出来即可转变为分子都是1 的运算。
( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。
重难点( 1)分子不是 1 的分数的裂差变型;( 2)分母为多个自然数相乘的裂差变型。
例题精讲一、用裂项法求1型分数乞降n(n1)剖析:1 型( n 为自然数)n(n 1)由于11= n n 1【例 1】 填空:n1 n 1( n 为自然数),因此有裂项公式:11 1n(n 1) n(n 1) n(n 1) n( n 1) n n 1(1)1- 1=( 2) 12 (3)11( 4) 2 13 212 3( 5)1 (6)11 (7)99 1(8)1159 6059 6010099100【考点】分数裂项【难度】 ☆ 【题型】填空【分析】( 1)原式 = 1 ;( 2)原式 =11 ;( 3)原式 =2 1 ;(4)原式 = 11 ;( 5)原式 = 1 1 ;1 21 2 32 3 59 60 ( 6)原式 =1 ;(7)原式 = 11 ;( 8)原式 = 1 。
59 6099 100 99 100【答案】( 1)1;(2)11 ;(3) 1 3 ;(4)11 ;( 5) 1 1 ;( 6) 59 1 ;(7) 11 ;1 21 22 23 59 6060 99 1001 (8)。
99 100【稳固】 1 1 1 1 1 。
2 23 34 45 5 61【考点】分数裂项【难度】☆☆【题型】填空【分析】原式1 1 1 1 1 1 1 1 51 2 2 3 5 6 1 6 6【答案】5。
6【例 2】计算: 1 1 (1)10 11 11 12 6059【考点】分数裂项【难度】☆☆【题型】解答【分析】原式1 1(1 1 1 1 1 1 1 ( )11) ...... (60)60 12 10 11 12 59 101【答案】。
【稳固】计算:1 1 1 1 11985 1986 1986 1987 1995 1996 1996 1997 1997【考点】分数裂项【难度】☆☆【题型】解答【分析】原式1 1 1 1 1 1 1 1 1 11985 1986 1986 1987 1995 1996 1996 1997 1997 1985 1【答案】。
1985【例 3】计算:11 2 2 4 ____。
2 6 15 35 77【考点】分数裂项【难度】☆☆【题型】填空【分析】原式1 32 53 7 5 11 72 6 15 35 771 1 1 1 1 1 1 1 12 23 3 5 5 7 7 1111111011【答案】10。
11【稳固】11 1 1 1 1 1 1 _______。
6 12 20 3042 5672 90【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 =11 1 11 1 1 16 12 20 3042 56 72 90111111112 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1011= 2 102 =5【答案】25【例 4】 计算:11 1 1 1 1 1 11 = 。
26 1220 30 42 56 7290【考点】分数裂项【难度】 ☆☆ ☆【题型】解答【分析】原式1 ( 13 1 1 5 5 11 7 7 1 8 1 9 1 )2 234 4 6 6 8 9 101 1 1 1 1112 (3 3 49)2101 11)2 ( 1021101【答案】。
1 11411【稳固】计算: 123202026 12420【考点】分数裂项【难度】☆☆☆【题型】解答【分析】原式12 3 20 1 1 1 1 12 6 122042021011111 12 23 34 45 2021210 11 1 1 1 1 1 12 2 33 420 21210 112120 21021【答案】 21020。
21【例 5】 计算: 20081200912010 12011 11854108 180 【考点】分数裂项【难度】 ☆☆ ☆【分析】原式20082009 2010 20112012163 2010 51 1 1 1 1 1 1 91 2 235 6510050545【答案】 10050。
2012 1 =。
270【题型】填空111169 9 12 12 15 15 18【稳固】计算:15 11 19 29 97019899 .2 6 12 2030 97029900【考点】分数裂项【难度】 ☆☆ ☆【题型】填空 【分析】原式1 1 11 11112 6 129900991111 2 2 399 10099 11 1 1 1 12 2 39910099 11100198 100【答案】 98 1 。
1001 二、用裂项法求型分数乞降n( n k)1剖析:n(n k)型。
( n,k 均为自然数)11 11 由于 1(11 ) 1 [ n kn]1 ,因此n(n k) k ()nn kk nn kk n(n k ) n(n k)n(n k)【例 6】 11 11 3 3 5 5 799 1011【考点】分数裂项【难度】 ☆☆【题型】填空【分析】1 3 1 5 199 1 1 (1 1 1 1 11) 50 1 3 5 7 101 2 3 3 599 101 101【答案】 50 。
101【稳固】 计算:11 1 11 113 15 356399 143 195【考点】分数裂项【难度】 ☆☆【题型】解答 【分析】原式11 11 1 111 3 3 5 5 77 9 9 11 11 13 13 15 1 1 1 1 1 1 1 1 12 13 2 35213 151 1 12 1 157157【答案】。
【例 7】 计算: 251 11 13 3 55 723 251 【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式1 11 1 1 11 251 1 25 24 12253 3 523 25 21225225【答案】 12。
【稳固】 计算: ( 1 11 1 1 11 1 ) 128 8 24 48 80 120 168224 288【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 ( 14 4 1 18 16 1 ) 1282 6 6181 ( 1 1 1 1 11) 1282 2 4 4 616 18( 1 1)64 2 184 28 9【答案】 28 4。
9k 三、用裂项法求型分数乞降n( n k)k剖析:n(n k)型( n,k 均为自然数)由于 11 = n kn =k,因此k = 1 1 n n k n(n k) n( n k) n(n k) n(n k)n n k【例8】求23 252 7 ...... 97 2 的和 13 5 99【考点】分数裂项【难度】 ☆☆ 【题型】解答【分析】原式(1 1 )1 1 1 1 1 13 () ()...... ()3 55 797 99119998 99【答案】98 。
99【稳固】222210 9 9 85 4 4 3【考点】分数裂项【难度】 ☆☆【题型】填空【分析】原式 21 1 1 11 1 1 1 1 1 79 10 8 94 5 3 4210153 7【答案】。
【例 9】 计算: 3334 4776 791【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =11 1 11 1 1 4 477679= 1179787【答案】78。
79【稳固】33335 5 8 8 1132 352【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 = 1 11 1 11 1 12 55 8 81132 35=1 12 35=3370【答案】33。
704 4 44【例 10】77 165202121【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =44 447 7 11 11 15 43 4731 1 1 1111 1 =7 711 11154347311=3 4744=141【答案】44。
141【稳固】 (22 22 ) 463 15 35575【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式 =2 2 22 46 33 5 5 723 1251 1 1 1 1 1 1 1=3 3 5 572346125= 11 46254 = 4425【答案】 444。
25讲堂检测1、 计算:1 11 12 23 3 449 501【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式= 1-1+ 1 - 1+ +1- 1=4922 3495050【答案】49。
502、 计算:1 1 1 11 1 164824 48 80120168 224【考点】分数裂项【难度】 ☆☆【题型】解答【分析】原式1 11 1 1 1 1648 24 48 80 120 168 224= 1111 1 11648 3 8 6 810 8 15 8 21 8 281 8=111 1 1 1 1 1 6483 6 10 15 21 28=8 2 2 222 2 22 6122030 42 56=822222 221 22 33 44 5 5 6 6 7 7 8=8 211111111 22 3 3 4 4 5 5 6 6 7 78=161 1 1 1 1 1 1 1 1 1 1 1 1 122 33 44 55 66 77 8=16118=14【答案】 14。