超声波衰减规律
- 格式:ppt
- 大小:77.00 KB
- 文档页数:2
超声波检测原理及应用超声波检测是利用声波在物质中传播的特性对物质进行无损检测和测量的一种方法。
其原理是利用超声波在材料中的传播速度和反射衰减规律,通过测量声波在材料中的传播时间以及反射强度来获取材料的内部结构、缺陷等信息。
超声波检测是一种非破坏性检测方法,其应用广泛,包括工业、医学、环境科学等领域。
下面将详细介绍超声波检测的原理及应用。
一、超声波检测原理超声波是一种频率超过人类听力范围的声波,一般指频率大于20kHz的声波。
超声波在固体、液体和气体等介质中传播时会发生反射、折射和散射等现象,这些现象与材料的密度、弹性、缺陷等属性有关。
超声波在材料中传播的速度与材料的密度和弹性有关,通常情况下,密度越大、弹性越高的材料,其超声波传播速度越快。
超声波在材料中传播时,可以被材料内部的缺陷、表面的不均匀性和界面反射等反射回来。
利用超声波检测材料时,可以通过测量超声波传播的时间和幅度来获取材料的内部结构、缺陷等信息。
测量的方法主要有脉冲回波法、干涉法、散射法等。
脉冲回波法是最常用的超声波检测方法,它利用超声波在材料中传播的速度和反射衰减规律,通过发送一个短脉冲的超声波信号,等待其被材料中的缺陷反射回来,然后测量超声波传播时间,从而计算出缺陷的位置和尺寸。
干涉法是利用超声波在材料中传播时发生的相位差引起的干涉现象,通过测量干涉信号的变化来获取材料的内部结构信息。
散射法是利用超声波在材料中传播时发生的散射现象,通过测量散射信号的特征来获取材料的微观信息。
二、超声波检测应用1. 工业领域:超声波检测在工业领域中有广泛的应用,可以用于材料的缺陷检测、质量评估和结构监测等。
例如,可以利用超声波检测金属焊接缺陷、混凝土中的裂缝、铸件中的气孔等。
2. 医学领域:超声波检测在医学领域中应用广泛,常用于诊断、治疗和监测等。
例如,超声波可以用于检测人体内部的器官、血管等组织的结构和功能,可用于诊断肿瘤、心血管疾病等疾病。
3. 材料科学:超声波检测在材料科学中有重要的应用,可以用于材料的结构、性能和缺陷等的研究。
超声波在不同介质中的传播速度及损耗系数测量-声学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——超声波是一种在弹性介质中传播的机械波,由于其具有波长短、传播方向性好等优点,在大学物理的声速测量实验中一般选择超声波段的声波进行测量。
超声波由于其频率高、功率大、穿透能力强、信息携带量大等特点,已广泛应用于工业、农业、生物医学以及科学研究等领域,如超声波测距和定位、超声波无损检测、超声波清洗等。
描述声波的物理量有波长、频率、传播速度、强度等,对这些量的测量是声学技术的重要内容,声速的测量在声波测距、定位和无损检测中有着广泛的应用。
声速测量实验属于大学物理实验中的基础性实验,一般仅开设超声波在空气中传播速度的测量,该部分原理简单,导致实验内容不饱满,因此,根据仪器特点,可将声速测量实验改造为超声波专题设计综合实验,增设一些设计性实验内容。
测量超声波在不同介质中的传播速度;研究同一介质中随发射和接收端距离变化,接收端振幅的变化规律;计算不同介质中超声波的损耗系数等。
对于实验数据的处理要求学生使用Origin、Matlab 等软件辅助完成,在学习物理内容的同时,熟练掌握常用数据处理软件的使用,不断挖掘学生学习的积极主动性,培养学生的创新意识和能力。
1 实验原理超声波传播速度常用的测量方法有共振干涉法、相位法、反射回波法等,本文采用共振干涉法研究不同介质中超声波的传播特性。
共振干涉法又称驻波法,实验装置如图 1 所示,由示波器、声速测量仪和信号发生器组成,S1和S2为压电陶瓷换能器,利用压电效应实现声压和电压之间的相互转换。
在信号发生器产生的交变电压作用下,使发射端S1产生机械振动,将激发的超声波经介质传播到接收端S2,若接收面与发射面平行,声波在接收面处就会被垂直反射,当接收端与发射端距离恰好等于半波长的整数倍时,两波叠加后形成驻波,当信号发生器的激励频率等于压电陶瓷换能器的固有频率时,会产生驻波共振。
第一章 超声波探伤的物理基础第八节 超声波的衰减超声波在介质中传播时,随着传播距离的增加,其声能量逐渐减弱的现象叫做超声波的衰减。
在均匀介质中,超声波的衰减与传播距离之间有一定的比例关系,而不均匀介质散射引来的衰减情况就比较复杂。
一、产生衰减的原因凡影响介质质点振动的因素均能引起衰减。
从理论上讲,产生衰减的原因主要有以下三个方面:1. 由声束扩散引起的衰减超声波传播时,随着传播距离的增大,非平面波声束不断扩散,声束截面增大,因此,单位面积上的声能(或声压)大为下降,这种扩散衰减与传播波形和传播距离有关,而与传播介质无关。
对于球面波,声强与传播距离的平方成反比,即2X 1I α,声压与传播距离成反比,即X1P α。
对于柱面波,声强与传播距离成反比,声压与传播距离的平方根成反比,即X 1P α。
对于平面波,声强,声压不随传播距离的变化而变化,不存在扩散衰减。
当波形确定后,扩散衰减只与超声波传播距离(声程)有关。
扩散衰减是造成不同声程上相同形状和尺寸反射体回波高度不等的原因之一,这在声压方程中已经解决。
2. 由散射引起的衰减超声波传播过程中遇到不同声阻抗的介质所组成的界面时,会产生散乱反射,声能分散,造成散射衰减。
固体中尤以多晶体金属的非均匀性(如杂质、粗晶、内应力、第二相等)引起的散射衰减最为明显。
多晶体晶界会引起超声波的反射和折射,甚至伴有波型转换,这种散射也可称作瑞利散射。
散射衰减随超声波频率的增高而增大,且横波引起的衰减大于纵波。
3. 由吸收引起的衰减质点离开自己的平衡位置产生振动时,必须克服介质质点间的粘滞力(和内摩擦力)而做功,从而造成声能损耗,这部分损耗的声能也将转换成热能。
在超声波传播过程中,这种由于介质的粘滞吸收而将声能转换成热能,从而使声能减少的现象称为粘滞吸收衰减。
在超声波探伤中它并不占主要地位。
二、衰减规律和衰减系数超声波在不同介质中的衰减情况常用衰减系数加以定量表示。
超声波传播过程中的衰减规律与其波形有关。
超声波衰减方程:理解声波在介质中的衰减现象
超声波衰减方程是描述超声波在介质中传播时,其振幅随距离增加而减少的数学模型。
超声波衰减是由于声波在传播过程中受到介质内部各种因素的影响,如散射、吸收和扩散等,导致声波能量逐渐减小。
理解超声波衰减方程对于声波的传播、探测和应用具有重要意义。
超声波衰减方程的一般形式为:A(x) = A₀e^(-αx),其中A(x)表示在距离声源x处的声波振幅,A₀为声源处的振幅,α为衰减系数,表示声波振幅随距离衰减的速度。
衰减系数α与介质的性质、频率和温度等因素密切相关。
衰减系数α是超声波衰减方程中的关键参数。
它的大小反映了声波在介质中的衰减程度。
衰减系数α越大,表示声波衰减越快;反之,衰减系数α越小,表示声波衰减越慢。
衰减系数α与介质的声阻抗、声波频率以及介质中的散射和吸收等因素有关。
在实际应用中,超声波衰减方程对于声波探测、成像和治疗等方面具有重要意义。
例如,在医学超声成像中,通过测量超声波在人体组织中的衰减程度,可以推断出组织的声阻抗、密度等物理性质,进而得到组织的结构和病变信息。
此外,在声波通信、无损检测和材料科学等领域,超声波衰减方程也发挥着重要作用。
总之,超声波衰减方程是描述声波在介质中衰减现象的重要数学模型。
通过研究和应用该方程,我们可以更好地理解和利用超声波在各个领域的应用,为科学研究和工程实践提供有力支持。
不同组织超声衰减规律超声波听起来就像是科幻片里的高科技武器,光是名字就让人感觉好厉害对吧?实际上,它的工作原理并没有那么神秘,反倒是挺简单的。
就像我们日常用的那种测距仪,超声波就是通过一种我们听不到的高频声音,传入身体里去“探路”。
不同组织在超声波面前的表现呢,就像是每个人都有自己的个性。
说白了,它们对超声波的反应各不相同,这就是“超声衰减规律”的由来。
首先啊,大家可以想象一下,超声波就像是咱们站在池塘边扔石子,石子飞进去,激起一圈圈的水波纹。
每个组织就好比池塘里的不同地方,水的深浅、泥土的软硬都会影响这些波纹传播的速度和远度。
就拿咱们人体来说,脂肪跟肌肉对超声波的反应就完全不一样。
脂肪比较“懒”,它能吸收更多的超声波,传播的效果差点,就像是你扔个石子到沙滩上,石子几乎没什么反弹。
而肌肉就不一样了,肌肉里的水分多,超声波进去后能弹回来更多,反射得更厉害,简直像是石子扔到水面上,激起一片波涛汹涌。
再说骨骼吧,这玩意儿就像超声波的“敌人”。
如果超声波是一支勇猛的军队,骨头简直是那个挡路的大山,一下子就把它们给挡住了。
你想,骨骼这么密集坚硬,超声波压根就没办法顺利穿过。
超声波在碰到骨头时会迅速衰减掉,直接消失得无影无踪。
这也是为什么做超声检查时,医生常常要避开骨骼区域,利用软组织进行诊断,因为骨头太硬,啥也看不见。
对了,别以为只有这些组织会对超声波有反应。
空气和液体也有自己的“演出”。
空气呢,大家都知道,密度低、分子散,所以超声波在空气中的传播速度超慢,几乎什么都看不见。
而液体就比较“通情达理”,它们的密度适中,超声波穿透起来就比较轻松,跟脂肪差不多,可以顺畅地传递信息。
我们体内的血液、淋巴液这些液体组织,也都对超声波的传播有着一定的影响。
有时候医生检查的时候,会看到一些液体区域的衰减效果很明显,那就是因为超声波在液体中传播得比较轻松,波形反射出来的效果就特别清晰。
要说“衰减规律”,其实就像天气预报一样,知道不同组织的“性格”,就能预测超声波会如何与它们互动。
超声波相关信息1.超声波的原理和特性1.1超声波的原理在弹性介质中,如果波源所激起的频率,在20Hz到20000Hz之间,就能引起人的听觉。
在这一频率范围内的振动称为声振动,由声振动所激起的纵波称为声波。
超声波是以人耳能听到的声波频率为基准,其频率高于20000Hz,为不可闻的声波称为超声波,超声波频率可高达1011Hz。
(1)超声波是机械波在传播过程中其能量可为介质吸收而衰减。
在均匀介质中平面波通过极薄的厚度为dx一层介质后振幅的减弱(-dA)应正比于此处的振幅A,也正比于这厚度dx,即-dA =μAdx比例系数μ与介质的性质和波动的频率有关,称为介质的吸收系数。
经过积分得A =Ae-μx由于波的强度与振幅的平方成正比,所以平面波强度衰减的规律是I= Ie-2μx上式表明,波的强度随着传播距离的增加按指数规律衰减。
(2)波的反射和折射。
声压的幅值为Pm=Aωρv式中ρ为介质密度, v为介质波速。
Aω=Um是介质质元振动的幅值。
设Z = ρv,则Pm /Um=Z,即当声压幅值Pm确定时,Z值增大,则Um减小,形式上和欧姆定律相似,Z和电阻相当,故称之为介质的声阻抗。
声波在两种不同介质的分界面上将发生反射和折射。
反射声波和入射声波的声强之比I1/I称为声波的反射系数,用β表示,当声波垂直入射到分界面上时Z2-Z1β=〔————〕2Z2+Z1式中Z1=ρ1v1,Z2=ρ2v2分别表示介质1和2的声阻抗。
折射声波和入射声波的声强度之比I2/I称为折射系数,用α表示,声波垂直入射时4Z1Z2α= ————(Z1+Z2)2当Z2>>Z1或Z2<<Z1时,声波的反射系数β=1,声波在分界面上几乎发生全反射现象。
例如空气和人体软组织的声阻抗相差很大, β≈1,因此,在超声诊断疾病时,若直接将探头放在人体软组织上,则超声波几乎被全反射,不能进入人体,所以要在探头与人体间涂上石蜡油作为耦合剂,使β降低。
超声波波速测量实验报告一、实验目的本实验的主要目的是通过超声波测量技术,掌握超声波波速测量方法,了解超声波在不同介质中传播的特点和规律,以及掌握超声波在材料中传播时的衰减规律。
二、实验原理1. 超声波测量原理超声波是指频率高于人类听觉范围(20Hz ~ 20kHz)的机械振动波。
当超声波在介质中传播时,会受到介质密度、弹性模量等物理参数的影响。
因此,在不同介质中传播时,其传播速度也会发生变化。
根据超声波在介质中传播的特点和规律,可以通过测量其在不同介质中的传播时间和路径长度来计算出其传播速度。
2. 超声波衰减原理当超声波在材料中传播时,由于材料内部存在着各种缺陷和微小孔隙等结构,因此会受到能量损失和衰减。
这种能量损失和衰减就称为超声波衰减。
根据超声波在材料中传播时的衰减规律,可以通过测量超声波在材料中的传播距离和衰减程度来计算出材料的衰减系数。
三、实验器材1. 超声波测量仪2. 超声波探头3. 不同介质(如水、玻璃、金属等)4. 不同材料(如铝板、钢板等)四、实验步骤1. 超声波在不同介质中传播速度的测量(1)将超声波探头放置于水中,调节超声波测量仪,记录下超声波在水中传播的时间t1和路径长度L1。
(2)将超声波探头放置于玻璃中,调节超声波测量仪,记录下超声波在玻璃中传播的时间t2和路径长度L2。
(3)将超声波探头放置于金属中,调节超声波测量仪,记录下超声波在金属中传播的时间t3和路径长度L3。
(4)根据上述数据计算出水、玻璃和金属中超声波的传播速度,并进行比较分析。
2. 超声波单程衰减系数的测量(1)将铝板放置于水中,调节超声波测量仪,记录下超声波在铝板中传播的时间t4和路径长度L4。
(2)将钢板放置于水中,调节超声波测量仪,记录下超声波在钢板中传播的时间t5和路径长度L5。
(3)根据上述数据计算出铝板和钢板的超声波单程衰减系数,并进行比较分析。
五、实验结果1. 超声波在不同介质中传播速度的测量结果介质 | 时间t/s | 路径长度L/m | 传播速度v/m·s^-1-|-|-|-水 | 0.0008 | 0.02 | 2500玻璃 | 0.0012 | 0.03 | 2500金属 | 0.0006 | 0.015 | 25002. 超声波单程衰减系数的测量结果材料 | 时间t/s | 路径长度L/m | 衰减系数α/dB·cm^-1-|-|-|-铝板 | 0.0012 | 0.03 | 1.5钢板 | 0.0018 | 0.045|3六、实验分析与结论通过本次实验,我们掌握了超声波测量技术,并了解了超声波在不同介质中传播的特点和规律,以及在材料中传播时的衰减规律。
2009年CDFI上岗考试超声名词解释1、f频率--每秒振动的次数。
(超声波频率大于20KHz。
诊断用超声波f:1MHz~20MHz;. X- I0 c/ a7 i/ Q; I8 `连续波理疗声强:0.5~3W/cm2;HIFU高强度聚焦超声声强:1KW/cm2~10KW/cm2)2、声束――在非聚焦平面圆片被连续等幅高频电激励时,由于超声的照射而形成超声场,此场又可称为声束。
3、远场――从声束扩散点开始,即为远场。
该区内声场分布均匀,但是向周围空间扩散。
半扩散角为衡量声束指向性的重要指标,其越小,指向性越好。
4 M: M/ {8 w) ]% {2 n3 F% D! @. t) Q8 ^1 T* @9 D半扩散角的正弦值=0.61波长/r探头半径。
4、动态聚焦――利用延迟接收在整条声束的回声途径上(长轴方向)自动的、同步的进行全程接收聚焦。
5、8 K2 C+ ^% v& A" ?; ^8 ^轴向(纵向)分辨力――指在声束长轴方向上区分两个细小目标的能力。
f越高,轴向分辨力越好。
超声脉冲越宽,轴向分辨力越差。
理论上等于波长的1/2。
实际为理论的5~8倍。
6、横向分辨力--与探头厚度方向上声束宽度和曲面的聚焦性能有关。
% S8 g T4 o9 B" x U 聚焦区宽度一般<2mm。
7、侧向分辨力――与线阵、凸阵探头长轴方向扫描声束的宽度有关。
聚焦声束越细,其越好。
8、/ X2 m5 y6 y* @# X$ W细微分辨力――宽频带和数字化声束处理9、对比分辨力――与灰阶级数有关10、) X% Q8 I) |9 z& U时间分辨力――与单位时间成像速度即帧频有关,越高,越好。
11、Z声特性阻抗(声阻抗率)――指某点的声压和质点速度的复数比,等于介质中声速与密度的乘积。
- {. r! q- b: t; ?9 `7 ^7 W9 S3 C单位:Pa*s/m12、界面――两种声阻抗不同的物体(组织)的相接触处。
超声基础知识总结物理基础基本概念――人耳听觉范围:20-20000H Z超纵声波频率>20000H Z――纵波(疏密波):粒子运动平行于波传播轴;诊断最常用超声频率:2-10MH Z基本物理量:频率(f)、波长(λ)、声速(c);三者关系:λ=c/f人体软组织的声速平均为1540m/s,与水的声速相近;骨骼的声速最高,相当于软组织平均声速的2倍以上。
超声场:发射超声在介质中传播时其能量所达到的空间;简称声场,又称声束。
声束的影响因素:探头的形状、大小;阵元数及其排列;工作频率(超声的波长);有无聚焦及聚焦的方式;吸收衰减;反射、折射和散射等。
声束由一个大的主瓣和一些小的旁瓣组成。
超声的成像主要依靠探头发射高度指向性的主瓣并接收回声;旁瓣的反向总有偏差,容易产生伪像。
声场可分为近场和远场两部分(1)近场声束集中,呈圆柱状;直径――探头直径(较粗);(横断面声能分布不均匀) 长度――超声频率和探头半径。
公式:L=(2r·f)/cL为近场长度, r为振动源半径, f为频率, c为声速(2)远场声束扩散,呈喇叭状;声束扩散角越小,指向性越好。
(横断面声能分布较均匀)声束两侧扩散的角度为扩散角(2θ);半扩散角(θ).超声波指向性优劣指标是近场长度和扩散角.影像因素:增加超声频率;――近场变断、扩散角变小;增加探头孔径(直径)――但横向分辨率下降。
采用聚焦技术――方法:固定式声透镜聚焦;电子相控阵聚焦;声束聚焦:采用声束聚焦技术,可改善图像的横向和(或)侧向分辨力。
固定式声透镜聚焦――将声透镜贴附在探头表面。
常用于线阵探头、凸阵探头;可提高横向分辨力,但远场仍散焦。
电子相控阵聚焦――(1)利用延迟发射是声束偏转,实现发射聚焦或多点聚焦;可提高侧向分辨力;常用于线阵探头、凸阵探头;(2)动态聚焦:在长轴方向上全程接收聚焦。
(3)利用环阵探头进行环阵相控聚焦;可改善横向、侧向分辨力;(4)其他聚焦技术:如二维多阵元探头.超声物理特性:一、束射特性(方向性)――是诊断用超声首要的物理特性;(如反射、折射、聚焦、散焦)大界面:指长度大于声束波长的界面;大界面的回声反射有显著的角度依赖性.入射声束垂直于大界面时,回声反射强;入射声束与大界面倾斜时,回声反射减弱甚至消失。
1超声波概述1.1超声波基本理论1.1.1超声波的本质声波属于机械波,是声音的类别之一,人类能察觉到的纵波,频率范围是16Hz-20KHz。
次声波的频率小于16Hz,超声波的频率大于20Hz。
超声波是一种波动的形式,他能作为负载信息与探测的载体;超声波也是种能量的形式,其强度一旦超过一定程度时,他就能与媒介的相互作用,去影响或者破坏后者的形态,结构及性质。
超声波的折射、反射、散射、衍射在媒介中的传播是规律的,和可听声波的传播规律一样,没有本质上的区别。
然而超声波的波长短,厘米,甚至是毫米。
和可听声波相比,超声波有很多的特点:①传播特性─超声波波长稍短,障碍物尺寸比超声波的波长长达多倍,所以超声波衍射本事很差,可以沿着直线传播如果在均匀的介质里,波长越短,这特性就越显著。
②功率特性─声音如果在空气中直线传播可以让空气中的微粒振动而对微粒做功。
声波做功的快慢叫做声波功率。
在等同条件下,频率越高,拥有功率就越大。
由于频率高,所以超声波与平常声波相比,功率较高的是超声波。
③空化作用─因为液体微粒的剧烈振动当超声波在液体中传播的时侯,所以会在液体的内部制造出小空洞。
由于小空洞迅速胀大与闭合会使液体的微粒之间产生猛烈撞击作用,就会产生几千个甚至上万个大气压压强。
由于微粒这种相互作用是剧烈的,会提高液体的温度,起到了很好的搅拌作用,就会让两种不相溶的液体之间加速溶质的深度溶解,加快化学反应。
超声波空化作用就是这种因为超声波作用使液体里所引起各种效应[5]。
1.1.2超声波的应用因为超声波在化学物理方面的很独特的特性,所以超声波广泛的应用在很多方面。
总的来说,主要应用在以下的几个方面:(1)应用在检验方面声波短,具有很好的方向性,能够透过不透明的物质是超声波波长的特点。
这个特点被应用于超声波测距、探伤、遥控和超声成像技术。
超声波探伤是利用超声波能够由一截面进入另一截面时,可以在界面边缘发生反射的特点来检查零件是不是有缺陷的一种方法,根据超声波束从零件表面由探头通到金属内部,遇到缺陷和零件底面时会分别发生反射波在荧光屏上形成脉冲波形来确认缺陷大小和位置。