例题及作业
- 格式:doc
- 大小:2.54 MB
- 文档页数:3
数学实践性作业的例题
问题描述
在实践性作业中,通常需要学生运用数学知识解决实际问题。
以下是一些例题,供参考。
例题1:汽车行驶速度
一辆汽车在一段时间内以匀速行驶,已知该段路程长100公里,行驶时间为2小时。
请计算这辆汽车的行驶速度。
例题2:供水管道
一条供水管道长1000米,直径为10厘米。
已知水在管道内的
流速为2米/秒,请计算水在管道中的流量。
解题思路
解题思路1:汽车行驶速度
行驶速度的定义是单位时间内行驶的路程。
由题可知,汽车行驶100公里所花费的时间为2小时,因此速度等于路程除以时间。
即:
速度 = 100公里 / 2小时
解题思路2:供水管道
流量的定义是单位时间内通过一定区域的流体的体积。
由题可知,水在管道内的流速为2米/秒,管道的横截面积可以通过直径计算得到。
因此,流量等于流速乘以横截面积。
即:
流量 = 2米/秒* (π * (10厘米/2)²)
结论
结论1:汽车行驶速度
该辆汽车的行驶速度为50公里/小时。
结论2:供水管道
水在管道中的流量为314.16立方厘米/秒。
注意:以上结论仅供参考,实际情况可能存在误差。
参考资料
- 无。
环形跑到问题1、知识点总结(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题【例题1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?黄莺和麻雀每分钟共行66+59=125(千米),那么周长跑道里有几个125米,就需要几分钟,即500÷(66+59)=4(分钟).【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1-200=300(米/分).⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500÷(300-200)=5(分).300×5÷500=3(圈).【例题2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?第一次追上时,小亚多跑了一圈,所以需要300÷(6-4)=150秒,小亚跑了6×150=900(米)。
小胖跑了4×150=600(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,小胖跑4圈,小亚跑6圈。
【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?400÷(450-250)=2(分钟).【例题3】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?同向而跑,这实质是快追慢.起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大.接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈.背向而跑即所谓的相遇问题,数量关系为:路程和÷速度和=相遇时间.同向而行2分30秒相遇,2分30秒=150秒,两个人的速度和为:300÷150=2(米/秒),背向而跑则半分钟即30秒相遇,所以两个人的速度差为:300÷30=10(米/秒).两人的速度分别为:(10-2)÷2=4(米/秒), 10-4=6(米/秒)【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?甲乙的速度和为:400÷40=10(米/秒),甲乙的速度差为:400÷200=2(米/秒),甲的速度为:(10+2)÷2=6(米/秒),乙的速度为:(10-2)÷2=4(米/秒).【例题4】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
牛吃草问题例题讲解【例题1】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。
改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。
“廿”即二十之意。
)【题意翻译】:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。
若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【巩固】牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【例题2】牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【巩固】有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【例题3】由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?【例题4】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?【巩固】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。
如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?【例题5】一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?【巩固】有一片草场,草每天的生长速度相同。
若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。
那么,17头牛和20只羊多少天可将草吃完?【例题6】有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?【巩固】一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?【例题7】一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?【巩固】现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?【例题8】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【巩固】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【例题9】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【巩固】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【例题10】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【巩固】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【例题11】三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?【例题12】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题13】有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?【例题14】如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?【课后作业】1、牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2、仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。
例题及作业例2(B)有间歇、有搭接某项目经理部拟承建一工程,该工程有Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等五个施工过程,各施工过程的流水节拍及施工段如下表所示。
规定:施工过程Ⅱ完成后相应施工段至少养护2天;施工过程Ⅳ完成后其相应施工过程要有一天准备时间。
为了尽早完工,允许施工过程Ⅰ和Ⅱ之间搭接施工一天.试计算流水步距、工期,并作施工进度表流水节拍及施工段解题步骤:(1)计算流水步距(累加斜减取大差)Ⅰ:..3...5...7 ...11 ...14 ...kⅠ.Ⅱ = 4 d Ⅱ:..1...4...9 ...12 ...13 ...kⅡ.Ⅲ= 6 d Ⅲ:..2...3...6 ...11 ...13 ...kⅢ.Ⅳ = 2 d Ⅳ:..4...6...9... 12 ...13 ...kⅣ.Ⅴ= 4 dⅤ:..3...7...9 ...10 ...12 ...2)计算工期TT=∑ki,i+1 +∑tj -∑td + Tn= (4+6+2+4)+(2+1)-1+(3+4+2+1+2)= 16+3-1+12= 30 d作如下施工进度表作业:1.相邻两个施工过程先后进入同一流水段施工的时间间隔称为()。
A.流水节拍B.流水步距C.工艺间歇D.流水间歇2.下列()参数为工艺参数。
A.施工过程数B.施工段数C.流水步距D.流水节拍3.某施工段的工程量为200m3 ,施工队的人数为25人,日产量0.8 m3 /人,则该队在该施工段的流水节拍为()。
A. 8天B. 10天C. 12天D. 15天4、某工程由Ⅰ、Ⅱ、Ⅲ、Ⅳ等施工过程组成;现划分为六个施工段;其流水节拍如下表所示;要求施工过程Ⅱ与Ⅲ之间有技术间歇3天,试编制流水施工方案。
例题1:某公司近五年的销售额数据如下:年份 | 销售额(万元)|2018 | 5002019 | 5502020 | 6002021 | 6502022 | 700解答思路:1. 计算销售额的平均增长率:计算每年的销售额增长量,然后求出这五年销售额增长量的平均值,即为平均增长率。
2. 预测2023年的销售额:根据平均增长率,计算2023年的销售额。
作业1:某学校近五年的学生人数数据如下:年份 | 学生人数|2018 | 10002019 | 10502020 | 11002021 | 11502022 | 1200例题2:某城市近五年的房价数据如下:年份 | 房价(元/平方米)|2018 | 100002019 | 110002020 | 120002021 | 130002022 | 14000解答思路:1. 计算房价的平均增长率:计算每年的房价增长量,然后求出这五年房价增长量的平均值,即为平均增长率。
2. 预测2023年的房价:根据平均增长率,计算2023年的房价。
作业2:某地区的居民收入数据如下:年份 | 居民收入(元/人)|2018 | 200002019 | 210002020 | 220002021 | 230002022 | 24000例题3:某电商平台的月销售额数据如下:月份 | 销售额(万元)|1月 | 3002月 | 3203月 | 3404月 | 3605月 | 380解答思路:1. 计算销售额的平均增长率:计算每个月的销售额增长量,然后求出这五个月销售额增长量的平均值,即为平均增长率。
2. 预测6月的销售额:根据平均增长率,计算6月的销售额。
作业3:某超市的月销售量数据如下:月份 | 销售量(件)|1月 | 10002月 | 11003月 | 12004月 | 13005月 | 1400。
第一章质点运动学例1、质点沿x轴正向运动,加速度a=-kv,k为常数。
设从原点出发时速度为v0,求运动方程x=x(t)与速度—位移关系v=v(x)。
例2、已知斜抛运动的抛射角为θ,初速度为v0。
求其轨迹方程。
例3、如图,小船在绳子的匀速v0牵引下运动,已知h。
求θ位置时船的速度与加速度大小。
(两种方法)例4、有一轮以匀角速ω旋转,一质点自轮心沿水平轮轴以匀速v0向轮边移动。
求质点的轨迹方程,以及t时刻质点的速度和加速度大小。
*例5、一只狼沿着半径为R的圆形岛边缘按逆时针方向匀速跑动,当狼经过某点时,一只猎犬以相同的速率从岛中心出发追逐狼。
设追逐过程中犬、狼、岛中心始终在一直线上,求猎犬的轨迹和追上狼时的位置。
*例6、(上海高考题改编)下图为平静海面上拖船A、B拖着驳船C运动的示意图。
已知A、B的速度分别沿缆绳CA、CB方向,且A、B、C不共线。
以下说法正确的是()(多选)(A)C的速度大小可能介于A、B的速度大小之间(B)C的速度一定不小于A、B的速度(C)C的速度方向可能在CA、CB的夹角之外(D)C的速度方向一定在CA、CB的夹角之内**例7、已知点P0(l,0)处有一小船,以长为l的线,拉着小船从原点向上走,小船沿着绳运动,PQ为P点切线,Q点恒在y轴上。
(1)以图中θ为参数,求P点的轨迹方程。
(曳物线)(2)若Q 点以匀速u 向上运动,求θ位置处P 点的加速度。
练习题1、一质点沿x 轴运动,其速度—时间关系为⎪⎭⎫ ⎝⎛+=t t v 6sin 23ππ,式中各量均取国际单位。
已知当t =0时质点在x =-2m 处。
求:(1)2s 时质点的位置;(2)0s 至2s 质点的位移;(3)0s 和2s 两时刻质点的加速度。
2、一质点以初速度v 0=5i 开始离开原点,其运动加速度为a =-i -j 。
求:(1)质点到达x 坐标最大值时的速度;(2)上述时刻质点的位置。
3、如图所示,长为l 的棒的一端A 靠在墙上,另一端B 搁在地面上,A 端以恒定速率u 向下运动。
乘法应用题专题训练重点数量关系★精讲精练例1、一艘货轮从甲港到乙港,去时用了9小时,每小时航行40千米。
返回时逆水,多用了3小时,返回时每小时航行多少千米?演练1、卡车在普通公路上以每小时40千米的速度行驶,出发4小时后准备返回,返回的速度是去时的2倍。
问几小时可以返回?例2、(1)一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2小时相遇,两个车站相距多少千米?演练2、两只轮船同时从上海和武汉相对开出。
从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。
请问,上海到武汉的航路长多少千米?例3、大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?演练3、A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?例4、甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?演练4、妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?例5、甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)演练5、甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?例6、小强每分钟走70米,小季每分钟走60米,两人同时从同一地点背向走了3分钟,小强掉头去追小季,追上小季时小强共走了多少米?演练6、六年级同学从学校出发到公园春游,每分钟走72米,15分钟以后,学校有急事要通知学生,派李老师骑自行车从学校出发9分钟追上同学们,李老师每分钟要行多少米才可以准时追上同学们?例7、一座大桥长2400米。
例2(B)有间歇、有搭接
某项目经理部拟承建一工程,该工程有Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等五个施工过程,各施工过程的流水节拍及施工段如下表所示。
规定:施工过程Ⅱ完成后相应施工段至少养护2天;施工过程Ⅳ完成后其相应施工过程要有一天准备时间。
为了尽早完工,允许施工过程Ⅰ和Ⅱ之间搭接施工一天.试计算流水步距、工期,并作施工进度表
流水节拍及施工段
解题步骤:
(1)计算流水步距(累加斜减取大差)
Ⅰ:..3...5...7 ...11 ...14 ...
kⅠ.Ⅱ= 4 d
Ⅱ:..1...4...9 ...12 ...13 ...
kⅡ.Ⅲ= 6 d
Ⅲ:..2...3...6 ...11 ...13 ...
kⅢ.Ⅳ= 2 d Ⅳ:..4...6...9...12 ...13 ...
kⅣ.Ⅴ= 4 d
Ⅴ:..3...7...9 ...10 ...12 ...
2)计算工期T
T=∑ki,i+1 +∑tj -∑td + Tn
= (4+6+2+4)+(2+1)-1+(3+4+2+1+2)
= 16+3-1+12
= 30 d
作如下施工进度表
作业:
1.相邻两个施工过程先后进入同一流水段施工的时间间隔称为()。
A.流水节拍
B.流水步距
C.工艺间歇
D.流水间歇
2.下列()参数为工艺参数。
A.施工过程数
B.施工段数
C.流水步距
D.流水节拍
3.某施工段的工程量为200m3 ,施工队的人数为25人,日产量0.8 m3 /人,则该队在该施工段的流水节拍为()。
A. 8天
B. 10天
C. 12天
D. 15天
4、某工程由Ⅰ、Ⅱ、Ⅲ、Ⅳ等施工过程组成;现划分为六个施工段;其流水节拍如下表所
施工过程流水节拍
①②③④⑤⑥
Ⅰ234232Ⅱ322321。