高分子化学第十章(功能高分子) powerpoint 演示文稿
- 格式:pdf
- 大小:1.54 MB
- 文档页数:39
高分子化学ppt幻灯片课件•高分子化学概述•高分子化合物结构与性质•高分子合成方法与反应机理•高分子材料制备与加工技术•高分子材料性能与应用领域•高分子化学前沿研究领域与展望目录CONTENTS01高分子化学概述高分子化学定义与特点定义高分子化学是研究高分子化合物的合成、结构、性能及其应用的科学。
特点高分子化学涉及的高分子化合物具有分子量高、分子结构复杂、性能多样等特点。
高分子化学发展历史早期阶段天然高分子的利用和改性,如橡胶、纤维素等。
合成高分子阶段20世纪初合成第一个高分子化合物——酚醛树脂,之后合成橡胶、塑料等高分子材料。
高分子科学建立20世纪30年代,高分子科学作为一门独立学科得以建立,高分子化学作为高分子科学的重要分支得到迅速发展。
材料领域生物医学领域环保领域其他领域高分子化学研究意义合成具有优异性能的高分子材料,满足航空航天、汽车、建筑等领域对高性能材料的需求。
开发可降解高分子材料,解决传统塑料带来的环境污染问题。
研究生物相容性高分子材料,用于医疗器械、药物载体等方面,提高医疗水平。
高分子化学在能源、信息、农业等领域也有广泛应用,推动相关产业的发展。
02高分子化合物结构与性质由长链分子组成,链上原子以共价键连接,形成线性或支链结构。
链状结构由三维空间的分子链交织而成,具有高度的交联性和空间稳定性。
网状结构高分子链在空间中的排列和堆砌方式,包括晶态、非晶态、液晶态等。
聚集态结构高分子化合物基本结构非晶态结构高分子链在空间中无规则排列,呈现无序状态。
非晶态高分子具有较好的柔韧性和加工性能。
晶态结构高分子链在空间中规则排列,形成晶体。
晶态高分子具有优异的力学性能和热稳定性。
液晶态结构介于晶态和非晶态之间的一种特殊聚集态,高分子链在空间中呈现一定程度的有序排列。
液晶高分子具有独特的光学、电学和力学性能。
高分子化合物聚集态结构物理性质包括颜色、密度、熔点、沸点、溶解度等。
这些性质与高分子的结构密切相关,如支链和交联程度会影响密度和熔点。
第十章功能高分子功能高分子:具有特殊的物理或化学性能的高分子,如吸附性能、反应性能、光性能、电性能、磁性能等。
10.1吸附分离功能高分子吸附是指液体或气体中的某些分子通过各种亲和作用结合于固体材料上。
应用:利用吸附的选择性,可实现复杂物质体系的分离与各种成分的富集与纯化;通过专一型吸附可实现对复杂体系中某种物质的检测。
吸附分离功能高分子:对某些特定离子或分子具有选择性吸附作用的高分子。
吸附分离功能高分子分类:按其吸附机理可分为化学吸附、物理吸附和亲和吸附高分子三大类;按其形态可分为无定形、珠状、纤维状;按其孔结构的不同,可分为微孔型(凝胶型)、中孔型、大孔型、特大孔型等。
10.1.1吸附分离功能高分子骨架结构的合成为了保证吸附树脂在使用时不被溶解,其骨架结构通常需有一定程度的交联,常常是由单乙烯基单体和多乙烯基交联单体共聚而成的交联结构,可以有无定形、珠状和纤维状三种基本形态,其中珠状材料应用最为广泛。
成珠技术:悬浮聚合50~1500μm 沉淀聚合微米级乳液聚合0.05~0.7μm其中以悬浮聚合的应用最为广泛。
悬浮聚合所得的交联聚合物小球为凝胶型,凝胶型交联小球在干态时孔隙非常小,只有在添加良溶剂后才会重构一定的孔隙。
因此,凝胶型交联小球常常必须在良溶剂中使用。
如果在聚合反应过程中加入致孔剂,则可得到大孔型交联小球,其多孔结构是永久的,在气相和不良溶剂中也可使用,并且大孔型交联小球比凝胶型交联小球吸附能力更强,在进行化学改性时,更容易获得高的功能基引入率。
致孔技术:惰性稀释剂致孔线形高分子致孔10.1.2化学吸附功能高分子(1)离子交换树脂离子交换树脂:通过离子键与各种阳离子或阴离子产生吸附作用,对相应的离子进行离子交换。
离子交换树脂的分类:强酸型阳离子交换树脂最具代表性的是聚苯乙烯磺酸树脂弱酸型阳离子交换树脂最具代表性的是聚(甲基)丙烯酸型的离子交换树脂强碱型阴离子交换树脂常用的是对聚苯乙烯交联小球先后经氯甲基化和季铵化改性后得到弱碱型阴离子交换树脂其离子交换功能团为伯胺基、仲胺基或叔胺基离子交换树脂的应用用于清除离子:如阳离子交换树脂用于清除水溶液中的阳离子,阴离子交换树脂用于清除水溶液中的阴离子,将阳离子交换树脂与阴离子交换树脂分别装柱串联使用或混合装柱,可消除水中的阴离子和阳离子,用于制备去离子水、废水处理等。
用于离子交换:利用其离子交换的可逆性,用于离子交换反应,最成功的应用是离子交换色谱,可以用来分离由多种离子组成的混合物。
用于酸、碱催化反应:如质子型的阳离子交换树脂可作为非常有效的高分子酸催化剂,氢氧根型阴离子交换树脂则是一种性能良好的高分子碱性催化剂。
(2)高分子螯合树脂高分子螯合树脂的特征是在高分子骨架上连接有对金属离子具有配位功能的螯合基团,通过选择性螯合作用而实现对各种金属离子的浓缩和富集,可广泛地应用于分析检测、污染治理、环境保护和工业生产。
如β-二酮螯合树脂,可以由甲基丙烯酰丙酮的聚合反应而得,也可由聚乙烯醇与乙烯酮等反应而得:H 2C C CH 3C CH 2O C O CH 3CH 2C CH 3C O CH 2C CH 3O()nn CH 2CH OH()n +H 2C C O CH 2CH O()n C O CH 2C CH 3O冠醚类螯合树脂中的冠醚结构可以在主链上,也可在侧基上,其中以侧链形式较多,如:CH 2CH OO O O OO CH 2CHO O O OO O 10.1.3物理吸附功能高分子物理吸附功能高分子主要是一些非离子吸附树脂,根据其极性大小可分为非极性、中极性和强极性三类。
非极性吸附树脂主要是交联聚苯乙烯大孔树脂,可通过范德华力吸附具有一定疏水性的物质,可用于水溶液或空气中有机成分的吸附和富集。
中极性吸附树脂主要是交联聚丙烯酸酯类及其与苯乙烯的共聚物。
其吸附作用除范德华力外,氢键也起一定的作用,与被吸附物质中的疏水基团和亲水基团都有一定的作用,因此能从水溶液中吸附疏水性物质,也能从有机溶液中吸附亲水性物质。
聚丙烯酸酯类吸附树脂通过化学改性引入强极性基团成为强极性吸附树脂,如利用水解反应释放出强极性的羧基,其吸附作用主要通过氢键和偶极作用进行。
强极性吸附树脂主要用于在非极性溶液中吸附极性较强的化合物,对被吸附化合物的吸附能力正好与非极性吸附树脂相反,即被吸附化合物的极性越弱,吸附能力越弱。
10.2高分子试剂与高分子催化剂10.2.1概述将具有反应活性或催化活性的功能基通过适当的方法引入高分子骨架就可得到高分子试剂或高分子催化剂。
活性功能基的引入可有三种基本方法:含功能基单体的聚合对聚合物载体进行功能化改性前两种方法的结合,即通过含功能基单体的聚合引入某种功能基,再通过化学改性将之转化为另一种功能基。
10.2.2高分子试剂与高分子催化剂的优越性(1)具有更高的稳定性和安全性:高分子骨架的引入对功能基及催化剂分子具有一定的屏蔽作用,可大大提高其稳定性;其次高分子化后可大大减小试剂的挥发性,提高安全性;(2)易回收、再生和重复使用,可降低成本和减少环境污染;(3)化学反应的选择性更高,利用高分子载体的空间立体效应,可实现立体选择合成及分离;(4)后处理较简单,在反应完成后可方便地借助固-液分离方法将高分子试剂或高分子催化剂与反应体系中其他组分相互分离Y +产物X +其它反应物Y +副产物高分子化产物(5)可使用过量试剂使反应完全,同时不会使后处理变复杂;(6)可应用于组合化学合成,实现化学反应的自动化,特别是在多肽、多核苷酸、多糖等的自动化合成工艺上具有重要意义。
10.2.3高分子试剂高分子氧化还原试剂氧化氧化还原高分子氧化剂NH Ph3-H-ClCrO33ClO-NMe 3Cr 2O 72-2·CrO33MnO 4-高分子还原剂3-BH42H高分子卤化试剂CH O ONBr Ph NBr高分子亲核取代试剂3-OAr +RXROAr10.2.4高分子催化剂离子交换树脂催化剂SO 3H2NR 3OH -高分子负载Lewis酸和超强酸CF 2CF 2OCF 2CF 2CF 2SO 3HCF 3m nCH 2HCAlCl 3高分子相转移催化剂ONR'R"10.3高分子分离功能膜当膜处在某两相之间时,由于膜两侧存在的压力差、浓度差以及电位差等,驱使液态或气态的分子或离子等可从膜的一侧渗透到另一侧。
在渗透过程中,由于分子或离子的大小、形状、化学性质、所荷电荷等不同,其渗透速率也不同,即膜对渗透物具有选择性,因此可利用膜的这种渗透选择性来分离不同的化合物,具有这种分离功能的高分子膜称高分子分离功能膜。
渗透物在膜中的渗透速率称为膜的渗透性,不同渗透物在膜中的渗透速率不同称为膜的渗透选择性,是分离膜分离功能的基础。
10.3.1高分子分离功能膜分类按被分离物质的不同:可分为气体分离膜、液体分离膜、固体分离膜、离子分离膜和微生物分离膜等。
按膜的孔径或被分离物的体积大小:5000nm 以上,微粒过滤膜100~5000nm ,微滤膜,可用于分离血细胞、乳胶等2~100nm ,超滤膜,可用于分离白蛋白、胃蛋白酶等~10Å,纳滤膜,可用于分离二价盐、游离酸和糖等~Å,反渗透膜(超细滤膜),可在分子水平上分离NaCl 等。
按膜的结构主要分为:致密膜:一种刚性、紧密无孔的膜,可以由聚合物熔融挤出成膜或由聚合物溶液浇铸成膜。
多孔膜:多孔膜是一种刚性膜,其中含有无规分布且相互连接的多孔结构。
可由烧结法、拉伸法、径迹蚀刻等方法获得。
10.3.2高分子分离膜的分离机理高分子分离膜主要有三种基本的分离机理:(1)筛分效应分离机理多孔膜的分离机理是筛分机理,即在膜渗透过程中,只有体积小于膜孔的分子能够由膜孔通过,并且体积较小的渗透物比体积较大的渗透物渗透速率更快。
(2)溶解-扩散效应分离机理溶解-扩散机理:首先,渗透分子溶解在膜的表面,然后扩散穿过分离膜,出现在膜的另一面。
其中溶解性取决于膜与渗透物的亲和性;而扩散性则取决于膜聚合物的化学结构及其分子链运动。
致密膜的一个重要性能是如果被分离物在膜中的溶解性差别显著时,即使其分子大小相近也能有效地分离。
(3)电化学效应分离机理在微孔分离膜上接枝离子基团便可得到离子交换分离膜,离子交换分离膜的分离机理除筛分效应外,主要是电化学效应分离机理:吸附分离膜上固定离子基团的反离子,而排斥固定离子基团的同离子。
10.3.3膜分离技术(1)透析透析是最早建立的膜分离技术之一,其原理是溶质在浓度差的驱动下从浓度高的一侧通过分离膜渗透到浓度低的另一侧,通过下游侧的溶液流动完成分离过程。
(2)电渗析电渗析是指在电场的作用下,离子通过离子选择性分离膜分别向与之对应的电极迁移,使不同离子相互分离的过程。
(3)全蒸发全蒸发的基本原理是将待分离的混合物放于膜的一侧,其中高挥发性的有机溶剂以蒸汽的形式渗透分离膜,在膜的另一侧收集。
其驱动力是渗透物蒸发所引起的蒸汽压差。
(4)微滤、超滤、纳滤和超细滤微滤、超滤、纳滤和超细滤是以压力差为驱动力,促使被分离物从压力高的一侧向压力低的一侧移动,利用筛分原理除去溶液中悬浮的微粒或溶解的溶质为目的的连续膜分离过程。
微滤可用于清除溶液中的微生物以及其他悬浮微粒(0.1-10um)。
重要应用:除菌(饮用水处理等)、果汁澄清、溶液澄清、气体净化等。
超滤常用于清除液体中的胶体级微粒以及大分子溶质(2-100nm,分子量1000–1000,000)。
主要应用:合成和生物来源的大分子溶液中溶质的分离、分子量分布较宽的大分子溶液进行分级处理、胶体溶液的纯化、从食品工业废弃的乳清中回收蛋白质等。
纳滤主要用来处理一些中等分子量溶质(0.5–5nm,分子量100~1000)。
主要用于:生活和生产用水的纯化和软化处理、化学工业中的催化剂回收、药物的纯化与浓缩、活性多肽的回收与浓度、溶剂回收等。
超细滤(反渗透)是在高压下使被分离物从膜的高浓度一侧向低浓度一侧渗透。
主要应用:于海水或苦咸水的脱盐、高硬水的软化、高纯水的制备等。
10.4生物医用高分子材料10.4.1生物医用高分子材料的范畴及其基本要求生物医用材料:以医疗为目的、用于与组织接触以形成功能的无生命的材料。
被广泛地用来取代和/或恢复那些受创伤或退化的组织或器官的功能,从而提高病人的生活质量生物医用材料必须满足以下的基本要求:(1)与组织短期接触无急性毒性、无致敏作用、无致炎作用、无致癌作用和其他不良反应(2)具有良好的耐腐蚀性能以及相应的生物力学性能和良好的加工性能。
(3)对于体内使用的医用材料,除了必须满足以上的基本要求外,还必须具有良好的组织相容性、血液适应性和适宜的耐生物降解性。
适当的生物降解性可从两方面来看,对于一些长期植入人体内的医用高分子材料要求具有很好的耐生物降解性,不致因发生生物降解而需定期更换;而有些高分子材料植入人体内后,只需在一定时期内发挥作用,在完成其功能后必须从体内去除,如外科手术的缝合线、医用胶粘剂和接骨材料等。