解线性代数方程组的直接方法
- 格式:ppt
- 大小:299.00 KB
- 文档页数:37
线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。
在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。
首先,我们讨论线性方程组的求解方法。
线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。
对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。
它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。
在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。
2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。
具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。
3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。
接着,我们可以通过LU分解来求解线性方程组Ax=b。
具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。
除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。
对于齐次线性方程组,其解空间是一个向量空间。
我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。
2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。
对于奇异线性方程组,其解可能不存在,或者存在无穷多解。
我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。
另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。
常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。
它通过将
方程组转化为上三角矩阵的形式来求解。
这个方法的关键在于选取
主元的策略。
一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。
2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。
它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。
这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。
3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。
这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。
4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。
5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。
它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。
这个方法通常比Jacobi迭代法收敛得更快。
以上是一些常见的线性代数求解方法。
每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。
解线性方程组的直接方法1.1 主元的选取与算法的稳定性1.1.1问题提出Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
1.1.2实验内容考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
1.1.3实验要求(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取10n =计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数20n =或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)将上述矩阵A中的主元改为0.00006再重新作一次数值实验看看。
(5)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
1.1.4实验过程(1)程序:clear;clc;a=input('是否调整消元次序(是:1,否:0)');n=input('系数矩阵的阶数:');%构造题中给定形式的矩阵A(1,1)=6;A(1,2)=1;A(1,n+1)=7;%第n+1列取题中的bfor i=1:(n-2);A(i+1,i)=8;A(i+1,i+1)=6;A(i+1,i+2)=1;A(i+1,n+1)=15;end;A(n,n-1)=8;A(n,n)=6;A(n,n+1)=14;%自动消元if a==0;for i=1:(n-1);for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;%手动控制消元次序if a==1;for i=1:(n-1);A %显示每步消元的结果m=input('请选取作为主消元行的行号');for l=1:(n+1);c=A(i,l);A(i,l)=A(m,l);A(m,l)=c;end;for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;(2)数值实验结果及分析:1、根据要求当10n=时用Matlab算得Cond(A)=1727.6,让程序自动选主元,x=与精确解一致。
线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。
在本文中,我们将介绍几种解决线性方程组问题的方法。
我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。
一、初等变换初等变换往往是解决线性方程组问题的起点。
我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。
2.将某个方程的倍数加到另一个方程上。
3.用一个非零常数来乘某个方程。
执行初等变换时,我们必须记住每个变换对解x的影响。
在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。
用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。
二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。
该方法通过使用矩阵增广形式来解决线性方程组问题。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。
2. 使用初等变换来将增广矩阵化为行梯阵形式。
行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。
3. 从最后一行开始,使用回带算法来求得线性方程组的解。
高斯消元法对于小规模的线性方程组可以轻松解决。
但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。
三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。
该方法的关键在于将解决方案表示为每个未知数的一个比值。
这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。
这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。
但是,如果有许多未知数,计算每个比率可能会非常繁琐。
另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。
四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a a a a aa a a a ΛΛΛΛΛΛ212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⇔∈n n x x x M 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A Λ= 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A M其中Ti b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21Λ,其中()Tk e 0,0,1,0,0ΛΛ= k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。
线性代数方程组求解线性代数方程组是线性代数中一个重要的概念,它描述了一组线性方程的集合。
求解线性代数方程组是线性代数中的一项基本任务,它对于解决实际问题和数学推理都具有重要意义。
本文将介绍线性代数方程组的求解方法,包括矩阵消元法和矩阵的逆。
矩阵消元法矩阵消元法是求解线性代数方程组的一种常用方法。
它通过消元和回代两个步骤来求解方程组。
具体步骤如下:1.构造增广矩阵:将线性方程组的系数矩阵和常数向量按列合并,得到增广矩阵。
2.初等行变换:对增广矩阵进行初等行变换,将其转化为阶梯形矩阵或行最简形矩阵。
3.回代求解:从最后一行开始,逐步代入求解未知数,得到方程组的解。
矩阵消元法的优点是简单直观,容易理解和实现。
然而,当矩阵的行数和列数较大时,矩阵消元法的计算复杂度会很高,需要消耗大量的时间和计算资源。
矩阵的逆除了矩阵消元法,我们还可以使用矩阵的逆来求解线性代数方程组。
矩阵的逆是一个与原矩阵相乘后得到单位矩阵的矩阵。
对于给定的线性方程组Ax=b,我们可以通过以下步骤求解:1.计算矩阵A的逆矩阵A^-1。
2.将方程组转化为x=A^-1b。
3.计算x的值。
求解矩阵的逆的方法有多种,包括伴随矩阵法和初等变换法等。
其中,伴随矩阵法是一种常用的求解逆矩阵的方法。
它通过求解伴随矩阵和矩阵的行列式来计算矩阵的逆。
使用矩阵的逆求解线性代数方程组的优点是计算速度快,尤其适用于行数和列数较大的情况。
然而,矩阵的逆并不是所有矩阵都存在,如果矩阵不存在逆矩阵或逆矩阵存在但计算困难,则无法使用矩阵的逆求解方程组。
小结线性代数方程组的求解是线性代数中的一个重要问题,涉及到实际问题的解决和数学推理。
本文介绍了两种求解线性代数方程组的方法:矩阵消元法和矩阵的逆。
矩阵消元法通过消元和回代的过程来求解方程组,简单直观但计算复杂度较高;矩阵的逆通过求解矩阵的逆矩阵来求解方程组,计算速度快但存在逆矩阵不存在的情况。
根据具体问题的需求和矩阵性质的条件,选择合适的方法来求解线性代数方程组是十分重要的。
第二章 解线性方程组的直接法本章研究的对象是n 阶线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a .........22112222212111212111 (2.1)其矩阵形式为b AX = (2.1)′其中,)(ij a A =是方程组的系数矩阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X ...21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b b ...21分别为方程组的未知向量和常数向量。
所谓直接法,就是在不计舍入误差时,经过有限步运算能求得方程组精确解的方法。
下面介绍几种较实用的直接法。
2.1 Gauss 消去法 2.1.1 Gauss 顺序消去法高斯(Gauss )消去法实质是消元法,只是步骤规范,便于编程。
它的基本做法是把方程组(2.1)转化成一个等价的三角方程组⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n g x b g x b x b g x b x b x b 2222211212111 (2.2) 这个过程称为消元。
然后,逐个求出11,,,x x x n n -,这个过程称为回代。
(一) 高斯消去法的计算过程为了符号统一,把方程组(2.1)改写成下面形式⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(1)1()1()1(2)1(1)1()1()1(2)1(1)1( (212)22221111211n nn n n n n b x a x a x a b x a x a x a b x a x a x a n n n(2.3)用矩阵表示为)1()1(b X A = (2.3)′其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1(2)1(1)1(2)1(22)1(21)1(1)1(12)1(11)1(nn n n nn a a a a aa a aa A, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)1()1()1()1(...21n b b b b 若0)1(11≠a ,用第二个方程减去第一个方程的)1(11)1(21/a a 倍,第三个方程减去第一个方程的)1(11)1(31/a a 倍,等等。
线性代数解方程组的方法
解线性方程组的方法:第一种消元法;第二种克拉姆法则;第三种逆矩阵法;第四种增光矩阵法;第五种计算机编程,随便用个软件,譬如Matlab,输入密令;目前这5中教为适用,适合一切齐次或者非齐次线性方程组。
第一种消元法,此法最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况;
第二种克拉姆法则,如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式就是解;
第三种逆矩阵法,同样要求系数矩阵可逆,直接建立AX=b与线性方程组的关系,X=A^-1.*b就是解;
第四种增光矩阵法,利用增广矩阵的性质(A,b)通过线性行变换,化为简约形式,确定自由变量,(各行中第一个非零元对应的未知数除外余下的就是自由变量),对自由变量进行赋值,求出其它未知数,然后写成基础解析的形式。
第五种计算机编程,随便用个软件,譬如Matlab,输入密令。
数值计算与MATLAB1《数值计算与MATLAB 》第5章求解线性代数方程组的直接法§0 引言§1 线性代数方程组求解概论§2 恰定线性方程组求解§3 矩阵的三角分解§4 MATLAB实现《数值计算与MATLAB 》引言大量的科技与工程实际问题,常常归结为解线性代数方程组,有关线性方程组解的存在性和唯一性在“线性代数”理论中已经作过详细介绍,本章的主要任务是讨论系数行列式不为零的n阶非齐次线性方程组Ax=b的两类主要求解方法:直接法(精确法)和迭代法。
《数值计算与MATLAB 》5.1 线性代数方程组求解概论线性代数方程组的矩阵表示Ax=b⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mnmnmmnnnnbxaxaxabxaxaxabxaxaxa22112222212111212111《数值计算与MATLAB 》线性代数方程组解的性质AS≡b解的判别及其结构Ax=0:有非零解——系数矩阵的秩R(A)<n。
若R(A)=n,则方程组只有零解。
Ax=b:分三种类型:当R(A)=R(B)=n时,称方程组为恰定方程组,这时它有唯一解向量;当R(A)=R(B)<n时,称方程组为欠定方程组,这时它有无穷多解向量;当R(A)<R(B)时,称方程组为超定方程组或矛盾方程组,即保留方程个数大于未知量个数,一般意义下无解,但可求出其最小二乘解。
《数值计算与MATLAB 》5.2 恰定线性代数方程组求解克莱姆法则对于恰定方程组Ax=b,即满足R(A)=R(B)=n 的方程组求解,可用克莱姆(Cramer)法则得出唯一解。
利用Cramer法则求解所需乘除运算量为:N=(n+1)!(n-1)+n=n!(n2-1)+nAΔhhxdet《数值计算与MATLAB 》高斯消去法(消元法)消元过程回代过程顺序高斯消去法(Gauss-Jordan)列主元素消去法主元素消去法全主元素消去法《数值计算与MATLAB 》5.3 矩阵的三角分解高斯消去法和三角矩阵消元过程:实质上就是用一系列行初等变换,即P n-1P n-2...P1Ax= P n-1P n-2 (1)使方程组等价地变换成一个三角形回代过程:就是先求出,然后逐个由下往上进行回代,求得方程组的解。