D≠ F 时但目标函数无下界时,称线性规划(LP) 无界或无最优解; D≠ F 时若目标函数有下界,可以证明线性规 划(LP)必有最优解.
27Leabharlann 可行域为凸集定理2.2.1线性规划问题 min cTx (LP) s.t. Ax=b x≥0 的可行域D为凸集.
对任意的a ∈ [0,1],设 z=ax+(1-a)y,则z≥0,且 Az=A(ax+(1-a)y) =aAx+(1-a)Ay =ab+(1-a)b =b 证明 任取x,y ∈ D,则有 因此z ∈ D Ax=b,x≥0, Ay=b,y≥0 D为凸集.
15
凸函数的性质
2
1
0
-1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 16
凸函数的判断
定理2.1.1 设f(x)定义在凸集D Rn上,x,y∈D. 令F (t)=f (tx+(1-t)y), t ∈ [0,1],则 (i) f(x)是凸集D上的凸函数的充要条件是对任 意的x,y∈ D,一元函数F (t)为[0,1]上的凸函 数. (ii) f(x)是凸集D上的严格凸函数的充要条件是 对任意的x,y ∈ D(x≠y),一元函数F (t)为[0,1] 上的严格凸函数. 该定理的几何意义是:凸函数上任意两点之间 的部分是一段向下凸的弧线.
5
凸集的性质
(i)有限个(可以改成无限)凸集的交集为凸集. 即:若Dj(j ∈ J)是凸集,则它们的交集 D={x|x ∈ Dj,j ∈ J } 是凸集. (ii)设D是凸集,b是一实数,则下面集合是凸集 b D={y | y =b x, x ∈ D}.
6
凸集的性质
(iii)设D1,D2是凸集,则D1与D2的和集 D1+D2={y|y=x+z,x ∈ D1,z ∈ D2}是凸集. 注:和集与并集有很大的区别,凸集的并集未必 是凸集, 而凸集的和集是凸集. 例:D1={(x,0)T|x ∈ R}表示 x 轴上的点, D2={(0,y)T|y ∈R},表示 y 轴上的点. 则D1∪D2表示两个轴的所有点,它不是凸集; D1+D2=R2是凸集