传送带上物体的有关问题分析(原创)
- 格式:ppt
- 大小:2.10 MB
- 文档页数:35
牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
涉及到传送带问题解析【学习目标】能用动力学观点分析解决多传送带问题【要点梳理】要点一、传送带问题的一般解法1.确立研究对象;2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响;⑴受力分析:F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。
⑵运动分析:注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。
⑶注意画图分析:准确画出受力分析图、运动草图、v-t图像。
3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。
要点二、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。
传送带上的摩擦力问题全攻略皮带传送是一种综合考查摩擦力及牛顿运动定律的问题,同时也能很好地联系生产、生活实际,所以是一种很好的题型.日常生活中传送带或与传送带类似的运输工具随处可见,如电梯、跑步机等,同学们接触它的机会很多。
近几年,以“传送带"为载体的习题在各类考试中出现的频率较高,形式也很灵活.本文就传送带上的摩擦力举例分析,并归纳解题中应注意的问题.例1 如图1所示,一物块从某曲面上的P 点自由滑下,通过一粗糙的静止传送带后,落到地面上的Q 点。
若传送带的皮带轮沿顺时针方向转动起来,使传送带也随之运动,再把该物体放到P 点自由滑下,那么( )A.它仍落在Q 点B 。
它落在点Q 左边C 。
它落在点Q 右边D.它可能落不到地面上 解析 两种情况下皮带对物块滑动摩擦力的大小(F f =μmg )和方向(水平向右)均不变,所以物块运动情况相同.答案 A点评 (1)本题中两种情况下物体相对传送带运动快慢不同,而滑动摩擦力与两物体间相对运动快慢无关.(2)分析此类问题的关键是清楚物体的受力情况,从而确定物体在传送带上的运动情况,最后判断出物体做平抛运动时的初速度大小。
若传送带的皮带沿逆时针方向转动起来,再把该物体放到点自由滑下,它的落点情况就会发生变化.例2 如图2所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速率v 2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速率为v 2’,则下列说法中正确的是( ) A 。
只有v 1= v 2时,才有v 2’= v 1B 。
若v 1〉 v 2时,则v 2’= v 2C 。
若v 1< v 2时,则v 2'= v 2D.不管v 2多大,总有v 2'= v 2 解析 物块先受向右的摩擦力,故向左减速,减速至速度为零后又反向加速,若v 1〉 v 2,物块向左减速和向右加速两过程中始终受水平向右的恒定摩擦力,做类竖直上抛运动,故v 2'= v 2;若v 1〈 v 2,物块反向加速,速度先达到v 1,此后物块随传送带一起匀速运动至光滑水平面,所以v 2’= v 1。
运动和力的关系“传送带”模型中的动力学问题素养目标:1.掌握传送带模型的特点,了解传送带问题的分类。
2.会对传送带上的物体进行受力分析和运动状态分析,能正确解答传送带上物体的动力学问题。
1.(2024·北京·高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。
下列说法正确的是( )A.刚开始物体相对传送带向前运动B.物体匀速运动过程中,受到静摩擦力C.物体加速运动过程中,摩擦力对物体做负功D.传送带运动速度越大,物体加速运动的时间越长考点一 水平传送带中的动力学问题水平传送带问题的常见情形及运动分析滑块的运动情况情景传送带不足够长(滑块最终未与传送带相对静止)传送带足够长一直加速先加速后匀速v 0<v 时,一直加速v 0<v 时,先加速再匀速v 0>v 时,一直减速v 0>v 时,先减速再匀速滑块一直减速到右端滑块先减速到速度为0,后被传送带传回左端若v 0≤v ,则返回到左端时速度为v 0;若v 0>v ,则返回到左端时速度为v例题1. 如图所示,足够长水平传送带逆时针转动的速度大小为1v ,一小滑块从传送带左端以初速度大小0v 滑上传送带,小滑块与传送带之间的动摩擦因数为μ,小滑块最终又返回到左端。
已知重力加速度为g )A .小滑块的加速度向右,大小为μgB .若01vv <,小滑块返回到左端的时间为1v v g m +C .若01v v >,小滑块返回到左端的时间为01v v gm +D .若01v v >,小滑块返回到左端的时间为()20112v v gv m +【答案】D【解析】A .小滑块相对于传送带向右滑动,滑动摩擦力向左,加速度向左,根据牛顿第二定律得:mg ma m =解得:a gm =1.若01v v >,先匀减速再反方向加速,反方向加速只能加速到1v ,不能加速到0v 。
传送带专题分析知识升华一、分析物体在传送带上如何运动的方法1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:(1)分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
(2)明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
(3)弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
2、常见的几种初始情况和运动情况分析(1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f 是物体受到的滑动摩擦力,V20是物体对地运动初速度。
(以下的说明中个字母的意义与此相同)物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。
其加速度由牛顿第二定律,求得;在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
(2)物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动,(也就是物体冲到运动的传送带上)①若V20的方向与V 的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
关于传送带上物体运动情况分析及题解1 倾斜传送带上物体运动情况[例1]静止的传送带上有木块正以速度匀速下滑,当传送带突然启动后木块滑到底部所用时间t与传送带不动时所用时间相比较谁大谁小物体的运动状态如何变化解析:(1)向上启动:在传送带上的物体受重力、支持力、摩擦力,由于传送带静止时,木块匀速下滑,说明摩擦力沿传送带向上,且有,传送带向上启动后,由于都不变,木块仍然以的速度匀速下滑(相对于大地)。
所以t=(不管传送带向上如何启动都一样)(2)如果传送带以v的速度向下运动,情况如何呢如图1所示。
(a ):木块所受的摩擦力方向向上,大小仍然为,森块仍以的速度匀速下滑,t=。
(b)v>:由于传送带速度大小木块速度,木块相对于传送带是向上滑动的,所以开始阶段,物体所受摩擦力是向下的,木块将以加速度,向下运动,直到增大到v为止,以后匀速(带足够长),t<。
以上是摩擦力等于的情况。
(3)如果传送带逆时针运动;物体所受摩擦力不等于,木块运动状态如何呢(a)v<:当,由于木块相对于传送带向下滑动,摩擦力沿斜面向上,木块以加速度,向下加速滑动。
当,木块先以减速运动,当木块速度减小到v时,木块和传送带保持相对静止。
以后,以速度v 匀速运动(摩擦力变为静摩擦力且等于)(b)v>:当,由于木块相对于传送带向上运动的,木块所受摩擦力沿传送带向下,所以木块以加速度,向下做加速运动,直到=v时,摩擦力反向为沿传送带向上,以后以加速度,做匀加速运动。
当,木块先以加速度,向下加速运动,直到=v为止,摩擦力反向,此后物体以速度v 匀速向下运动,且摩擦力等于。
(c)v=:当,木块只能以加速度,向下做匀加速运动。
当,木块以v 的速度始终与皮带保持相对静止匀速下滑,且静摩擦力等于。
[例2]如图2所示,传送带与地面成夹角,以10m/s的速度逆时针运动,在传送带上端轻轻地放一个质量m=的物体,它与传送带间的动摩擦因数,已知传送带从A→B的长度过l=16m,则物体从A到B需要的时间是多少解析:物体放上传送带以后,开始一段时间,其运动加速度。
传送带问题分析(总10页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除传送带问题分析【专题分析】传送带问题是高中阶段比较常见也是比较复杂的的题目形式。
受力方面,要分析物体与传送带之间是否存在摩擦力,是存在静摩擦力还是滑动摩擦力。
运动方面,要分析物体与传送带之间是相对运动,还是相对静止,是相对传送带向前运动,还是相对传送带向后运动。
能量方面,要判断物体与传送带之间的热量生成。
因此传送带问题需要用到多种物理规律进行求解,如运动学公式的选用、牛顿第二定律、动能定理、摩擦生热、能量转化守恒定律等。
物体在传送带上运动,有可能涉及多个物理过程,比如可能在传送带上一直加速,也可能先加速后匀速;可能在传送带上一直减速,也可能先减速后匀速,甚至还可能改变运动方向。
因此认真研究运动过程和受力情况是解决传送带问题的关键。
【题型讲解】题型一传送带“静”与“动”的区别例题1:如图 3-1-1所示,水平传送带静止不动,质量为1kg的小物体,以4m/s的初速度滑上传送带的左端,最终以2m/s的速度从传送带的右端。
如果令传送带逆时针方向匀速开动,小物体仍然以4m/s的初速度滑上传送带的左端,则小物体离开传送带时的速度A.小于2m/s B.等于2m/sC.大于2m/s D.不能达到传送带右端解析:本题主要考查对物体的受力分析。
当传送带不动时,物体受到向左的滑动摩擦力,在传送带上向右做减速运动,最终离开传送带。
当传送带逆时针开动时,物体仍然相对传送带向右运动,所以受到的摩擦力仍然向左,这样与传送带静止时比较,受力情况完全相同,所以运动情况也应该一致,最后离开传送带时速度仍然是2m/s,答案为B例题2:在例题1中,如果各种情况都不变,当传送带不动时,合外力对物体做功为W1,物体与传送带间产生的热量为Q1;当传送带转动时,合外力对物体做功为W2,物体与传送带间产生的热量为Q2。
传送带是应用广泛的一种传动装置,以其为素材的问题以真实物理现象为依据,它既能训练学生的科学思维,又能联系科学、生产和生活实际,是很好的能力考查型试题,这类试题大都具有物理情景模糊、条件隐蔽、过程复杂等特点,是历年高考考查的热点,也是广大考生的难点。
现通过将传送带问题归类赏析,从而阐述解决这类问题的基本方法,找出解决这类问题的关键,揭示这类问题的实质。
一、依托传送带的受力分析问题例1如图1所示,一质量为的货物放在倾角为的传送带一起向上或向下做加速运动。
设加速度为,试求两种情形下货物所受的摩擦力。
解析:物体向上加速运动时,由于沿斜面向下有重力的分力,所以要使物体随传送带向上加速运动,传送带对货物的摩擦力必定沿传送带向上。
物体随传送带向下加速运动时,摩擦力的方向要视加速度的大小而定,当加速度为某一合适值时,重力沿斜面向下的分力恰好提供了所需的合外力,则摩擦力这零;当加速度大于这一值时,摩擦力应沿传送带向下;当加速度小于这一值时,摩擦力应沿传送带向上。
当物体随传送带向上加速运动时,由牛顿第二定律得:所以,方向沿斜面向上。
物体随传送带向下加速运动时,设沿传送带向上,由牛顿第二定律得:所以。
当时,,与所设方向相同,即沿斜面向上。
当时,,即货物与传送带间无摩擦力作用。
当时,,与所设方向相反,即沿斜面向下。
小结:当传送带上物体所受摩擦力方向不明确时,可先假设摩擦力向某一方向,然后应用牛顿第二定律导出表达式,再结合具体情况进行讨论.二、依托传送带的相对运动问题例2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度开始运动,当其速度达到后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度小于传送带的加速度。
传送带问题归类分析摘要:本文从实际例题的角度分析了传送带问题,传送带问题从运动的角度来讲属于多过程,从受力的角度看是摩擦力突变类的复杂问题。
通过分类导析有利于训练学生思维能力和知识的应用能力,在教学中分类导析有利于突破这一难点问题。
一、传送带模型分析情景传送带类别图示滑块可能的运动情况滑块受(摩擦)力分析情景1 水平一直加速受力f=μmg先加速后匀速先受力f=μmg,后f=0情景2 水平v0>v,一直减速受力f=μmgv0>v,先减速再匀速先受力f=μmg,后f=0v0<v,一直加速受力f=μmgv0<v,先加速再匀速先受力f=μmg,后f=0情景3 水平传送带长度l<,滑块一直减速到达左端受力f=μmg(方向一直向右)传送带长度l≥,v0<v,滑块先减速再向右加速,到达右端速度为v0受力f=μmg(方向一直向右)传送带长度l≥,v0>v,滑块先减速再向右加速,最后匀速,到达右端速度为v减速和反向加速时受力f=μmg(方向一直向右),匀速运动f=0情景4 倾斜一直加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ情景5 倾斜一直加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ先以加速度a1加速,后以加速度a2加速先受摩擦力f=μmg cosθ,后受反向的摩擦力f=μmg cosθ情景6 倾斜一直男女宝宝吧加速受摩擦力f=μmg cosθ先加速后匀速先受摩擦力f=μmg cosθ,后f=mg sinθ一直匀速(v0>v)受摩擦力f=mg sinθ一直匀速(v0=v )受摩擦力f=0先以加速度a1加速,后以加速度a2加速先受摩擦力f=μmg cosθ,后受反向的摩擦力f=μmg cosθ情景7 倾斜一直加速受摩擦力f=μmg cosθ一直匀速受摩擦力f=mg sinθ先减速后反向加速受摩擦力f=μmg cosθ,二、应用举例【例1】如图1所示,一水平传送装置由轮半径均为R= m的主动轮O1和从动轮O2及传送带等构成。
传送带问题专题知识特点传送带上随行物受力复杂,运动情况复杂,功能转换关系复杂。
基本方法解决传送带问题要特别注重物理过程的分析和理解,关键是分析传送带上随行物时一般以地面为参照系。
1、对物体受力情况进行正确的分析,分清摩擦力的方向、摩擦力的突变。
当传送带和随行物相对静止时,两者之间的摩擦力为恒定的静摩擦力或零;当两者由相对运动变为速度相等时,摩擦力往往会发生突变,即由滑动摩擦力变为静摩擦力或变为零,或者滑动摩擦力的方向发生改变。
2、对运动情况进行分析分清物体的运动过程,明确传送带的运转方向。
3、对功能转换关系进行分析,弄清能量的转换关系,明白摩擦力的做功情况,特别是物体与传送带间的相对位移。
一、 基础练习【示例1】一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少?【讨论】1、在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?2、若物体质量m=2Kg ,在物体和传送带达到共同速度的过程中传送带对物体所做的功,因摩擦而产生的热量分别是多少?情景变换一、当传送带不做匀速运动时【示例2】一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止的。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
情景变换二、当传送带倾斜时【示例3】如图所示倾斜的传送带以一定的速度逆时针运转,现将一物体轻放在传送带的顶端,此后物体在向下运动的过程中。
( ) A 物体可能一直向下做匀加速运动,加速度不变 B.物体可能一直向下做匀速直线运动 C.物体可能一直向下做匀加速运动,运动过程中加速度改变 D.物体可能先向下做加速运动,后做匀速运动V情景变换三、与功和能知识的联系 【示例4】、如图所示,电动机带着绷紧的传送带始终保持v 0=2m/s 的速度运行,传送带与水平面间的夹角为30︒,现把一个质量为m=10kg 的工件轻放在传送带上,传送到h=2m 的平台上,已知工件与传送带之间的动摩擦因数为μ=3/2,除此之外,不计其它损耗。
图2—1 高中传送带问题(经典)一、难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
二、难点突破策略: (1)突破难点1在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。
通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。
摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。
前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。
若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。
关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。
若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。
传送带模型的解题思路及技巧传送带模型是物理学中一种常见的问题类型,涉及到物体在传送带上的运动。
解决传送带问题的基本思路是进行受力分析和运动分析。
以下是一些解题技巧:
1. 受力分析:首先分析物体在传送带上的受力情况。
传送带对物体施加一个向前的摩擦力,这个力可以是动力(如传送带正向旋转时)或阻力(如传送带逆向旋转时)。
同时,物体还受到重力的作用。
2. 运动分析:分析物体的运动状态,包括速度和加速度。
注意物体在传送带上的运动是相对传送带的运动,而不是相对于地面的运动。
要明确物体的运动方程,特别是共速点的求解。
3. 判断摩擦力方向:根据物体与传送带之间的速度差,判断摩擦力的方向。
如果物体速度大于传送带速度,摩擦力方向与传送带相同(向前);如果物体速度小于传送带速度,摩擦力方向与传送带相反(向后)。
4. 应用牛顿运动定律:根据物体的合外力,应用牛顿第二定律求解物体的加速度。
然后计算物体达到传送带速度的时间和运动距离。
5. 考虑传送带长度:当物体运动距离超过传送带总长时,问题
变为物体在传送带上的加速段所用时间及相关问题。
6. 注意参考系:在列运动学方程时,确保所有运动学量针对同一个参考系。
7. 深刻理解问题:传送带问题是受力分析和运动分析的综合应用,要深刻理解各种情况的运动规律,尤其是摩擦力与速度关系、加速度与摩擦力关系等。
通过以上解题思路和技巧,可以更好地解决传送带模型问题。
在实际解题过程中,还需要根据具体情况灵活运用这些方法。
高考热点专题——有关传送带问题的分析与计算传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学,生产和生活实际,因而,这种类型问题具有生命力,当然成为高考命题专家所关注的问题。
物体在皮带的带动下做匀加速运动,当物体速度增加到与皮带速度相等时,跟皮带一块做匀速运动,分析时要充分考虑整个过程中物体的运动情况。
解决此类问题除用到牛顿运动定律外还要用到的动能定理、动量定理和能量守恒定律等知识。
传送带问题的考查一般从两个层面上展开:一是受力和运动分析。
受力分析中关键是注意摩擦力的突变(大小,方向)——发生在V物与V带相同的时刻;运动分析中关键是相对运动的速度大小与方向的变化——物体和传送带对地速度的大小与方向比较。
二是功能分析。
注意功能关系:WF =△EK+△EP+Q。
式中WF为传送带做的功,WF=F·S带(F由传送带受力情况求得);△EK ,△EP为传送带上物体的动能、重力势能的变化;Q是由于摩擦产生的内能:Q=f·S相对。
下面结合传送带两种典型模型加以说明。
典例分析【例1】如图所示,水平放置的传送带以速度v=2 m / s向右运行,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,若A端与B端相距4 m,则物体由A到B 的时间和物体到B端时的速度是:()A.2.5 s,2 m / s B.1 s,2 m / s C.2.5 s,4 m / s D.1 s,4 / s【答案】A【解析】小物体放在A端时初速度为零,且相对于传送带向后运动,所以小物体受到向前的滑动摩擦力,小物体在该力作用下向前加速,a=μg,当小物体的速度与传送带的速度相等时,两者相对静止,不存在摩擦力,小物体开始做匀速直线运动。
所以小物体的运动可以分两个阶段,先由零开始加速,后做匀速直线运动。
小物体开始先做匀加速运动,加速度a=μg,达到的最大速度为2 m / s。
当v物=2 m / s时,。
动力学中的九类常见问题传送带【模型精讲】1.水平传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v 0>v 时,可能一直减速,也可能先减速再匀速(2)v 0<v 时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v 0>v 返回时速度为v ,当v 0<v 返回时速度为v 0解题关键:关键在于对传送带上的物块所受的摩擦力进行正确的分析判断。
(1)若物块的速度与传送带的速度方向相同,且v 物<v 带,则传送带对物块的摩擦力为动力,物块做加速运动。
(2)若物块的速度与传送带的速度方向相同,且v 物>v 带,则传送带对物块的摩擦力为阻力,物块做减速运动。
(3)若物块的速度与传送带的速度方向相反,传送带对物块的摩擦力为阻力,物块做减速运动;当物块的速度减为零后,传送带对物块的摩擦力为动力,物块做反向加速运动。
(4)若v 物=v 带,看物块有没有加速或减速的趋势,若物块有加速的趋势,则传送带对物块的摩擦力为阻力;若物块有减速的趋势,则传送带对物块的摩擦力为动力。
2.倾斜传送带问题情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a 1加速后再以a 2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a 1加速后再以a 2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能先减速,再反向加速,最后匀速(5)可能一直减速 求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定滑动摩擦力的大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相同时,物体所受的摩擦力的方向有可能发生突变。