高中三角函数诱导公式知识点总结
- 格式:docx
- 大小:38.64 KB
- 文档页数:4
三角函数诱导公式与同角的三角函数【知识点1】诱导公式及其应用公式一: sin()-sin αα-=; cos()cos αα-= ; tan()tan αα-=- 公式二: ααπ-sin sin(=+); ααπ-cos cos(=+); ααπtan tan(=+). 公式三: ααπsin sin(=-); ααπ-cos cos(=-); ααπtan tan(-=-) 公式四: sin(2sin παα-=-); cos(2cos παα-=); tan(2tan παα-=-)公式五: sin(2π-α) = cos α; cos(2π-α) = sin α. 公式六: sin(2π+α) = cos α; cos(2π+α) =- sin α.公式七: sin(32π-α)=- cos α; cos(32π-α) = -sin α.公式八: sin(32π+α) = -cos α; cos(32π+α) = sin α.公式九:απαsin )2sin(=+k ; απαcos )2cos(=+k ; απαtan )2tan(=+k .(其中Z ∈k ). 方法点拨: 把α看作锐角一、前四组诱导公式可以概括为:函数名不变,符号看象限公式(五)到公式(八)总结为一句话:函数名改变,符号看象限(原函数所在象限) 二、奇变偶不变,符号看象限 将三角函数的角度全部化成απ+⋅2k 或是απ-⋅2k ,符号名该不该变就看k 是奇数还是偶数,是奇数就改变函数名,偶数就不变例1、求值(1)29cos()6π= __________. (2)0tan(855)-= _______ ___. (3)16sin()3π-= __________.的值。
求:已知、例)sin(2)4cos()3sin()2cos( ,3)tan( 2απααπαπαπ-+-+--=+ 例3、 )2cos()2sin(21++-ππ【 】 A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos2例4、下列各式不正确的是【 】A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 例5、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于【 】 A .-23 m B .-32 m C .23 m D .32m例6、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为【 】A .5B .-5C .6D .-6例7、试判断sin(2)cos()(9tan (5)2αππααπαπα-+⎛⎫+- ⎪⎝⎭··cos 为第三象限角)符号 例8、化简3sin(3)cos()cos(4)25tan(3)cos()sin()22πααππαπαπααπ-⋅-⋅+-⋅+⋅-例9、已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(α--α-πα-π+α-π例10、若1sin()3πθ-=,求[]cos()cos(2)33cos()1cos sin()cos()sin()22πθθππθθθπθπθπ+-+--⋅-⋅--+的值.提示:先化简,再将1sin 3θ=代入化简式即可.例11、若α例12、设)(x f 满足(sin )3(sin )4sin cos ,(||)2f x f x x x x π-+=⋅≤,求)(x f 的表达式.例13、设222sin()cos()cos()()31sin cos()sin ()22f παπαπααπαπαα+--+=+++-+,1sin 2α≠-,求23()6f π-的值.【知识点2】同角的三角函数的基本关系式 同角三角函数的基本关系式有两个: ①平方关系: sin 2α + cos 2α= ②商数关系:=ααcos sin 例14、化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得【 】A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α 例15、若cos(π6-α)=m (|m |≤1),则sin(23π-α)的值为【 】A .-mB .-m 2 C.m2 D .m例16、1+2sin (π-3)cos (π+3)化简的结果是【 】A .sin3-cos3B .cos3-sin3C .±(sin3-cos3)D .以上都不对 例17、tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为【 】A .m +1m -1 B.m -1m +1C .-1D .1 例18、已知)1(,sin <=m m α,παπ<<2,那么=αtan 【 】A 21m m- B 21m m-- C 21mm-± D m m 21-±例19、若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于【 】 A 2 B 2- C 2-或2 D 0例20、已知3tan =α,23παπ<<,那么ααsin cos -的值是【 】 A 231+-B 231+-C 231-D 231+ 例21、已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则1g sin A 的值为【 】A .m +1nB .12(m -n )C.12(m +1n ) D.12(m -1n)例22、已知角α的终边经过点)60cos 6,8(0--m P ,且54cos -=α,则m 的值为【 】 A .21 B .21-C .23-D .23 例23、(2011年高考江西卷)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-552,则y= . 例24、已知)0(32cos sin πθαα<<=+,求θtan 精选试题1、以下四个命题中,正确的是【 】A .在定义域内,只有终边相同的角的三角函数值才相等B .{α|α=k π+6π,k ∈Z }≠{β|β=-k π+6π,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+23π<α<2k π,k ∈Z } 2、sin34π·cos 625π·tan 45π的值是【 】A .-43B .43C .-43D .433、已知()21sin -=+πα,则()πα7cos 1+的值为【 】A .332 B . -2 C . 332- D . 332± 4、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π【 】 A 、21-B 、21C 、23-D 、235、若(),2,53cos παππα<≤=+则()πα2sin --的值是【 】 A . 53 B . 53- C . 54 D . 54-6、已知cos78°约等于0.20,那么sin66°约等于【 】A .0.92 B.0.85 C.0.88 D.0.957、已知343tan ,,2,cos 2322πππααπα+=∈+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且则的值是【 】A .35-B .35C .45D .45-8、22222sin 1sin 2sin 3sin 89sin 90︒+︒+︒++︒+︒=9、已知3cos()5πα+=-,322παπ<<,则tan()2πα-=10、若1sin()22πα-=-,则tan(2)πα-=________. 11、已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan =.12、 已知cos()63πα-=25cos()sin ()66ππαα+--的值.提示:把56πα+化成()6ππα--,进而利用诱导公式求解.。
完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。
以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。
以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。
2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。
另外,还有一个规律是:奇变偶不变,符号看象限。
也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。
例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。
例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。
三角函数高中数学诱导公式大全
一、诱导之和差公式
1.正弦函数的和差公式:
sin(A±B) = sinAcosB ± cosAsinB
2.余弦函数的和差公式:
cos(A±B) = cosAcosB ∓ sinAsinB
3.正切函数的和差公式:
tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB)
二、诱导乘积公式
1.正弦函数的乘积公式:
sinAsinB = (1/2)[cos(A-B)-cos(A+B)]
2.余弦函数的乘积公式:
cosAcosB = (1/2)[cos(A-B)+cos(A+B)]
3.正切函数的乘积公式:
tanAtanB = (1-cosAcosB) / (cosAsinB)
三、诱导倒角公式
1.正弦函数的倒角公式:
sin(A/2) = ±√[(1-cosA)/2]
2.余弦函数的倒角公式:
cos(A/2) = ±√[(1+cosA)/2]
3.正切函数的倒角公式:
tan(A/2) = ±√[(1-cosA)/(1+cosA)]
四、三角函数的其他重要关系
1.正弦函数与余弦函数的关系:
sin^2A + cos^2A = 1
2.正切函数与余切函数的关系:
tanA × cotA = 1
3.正切函数与余弦函数的关系:
tanA = sinA / cosA
总结:三角函数诱导公式是高中数学中的重要内容,通过应用这些公式,可以化简复杂的三角函数表达式,简化计算过程。
掌握这些诱导公式,并熟练应用于解题,有助于提高数学运算能力。
知识点:高二数学三角函数诱导公式为大家提供的高二数学三角函数诱导公式,是大家进行高二数学学习和复习阶段非常有价值的学习资料,希望大家好好利用,也希望大家在其他科目的学习上也能学好总结各科目知识点。
三角函数的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot公式五:利用公式一和公式三可以得到2与的三角函数值之间的关系:sin(2)=-sincos(2)=costan(2)=-tancot(2)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cot观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
三角函数-高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
【导语】⼈⽣要敢于理解挑战,经受得起挑战的⼈才能够领悟⼈⽣⾮凡的真谛,才能够实现⾃我⽆限的超越,才能够创造魅⼒永恒的价值。
以下是©⽆忧考⽹⾼⼀频道为你整理的《⾼⼀数学必修四知识点:三⾓函数诱导公式》,希望你不负时光,努⼒向前,加油! 【公式⼀】 设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 【公式⼆】 设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 【公式三】 任意⾓α与-α的三⾓函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 【公式四】 利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 【公式五】 利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 【公式六】 π/2±α及3π/2±α与α的三⾓函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 【⾼⼀数学函数复习资料】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
高二数学三角函数诱导公式知识点学习高中频道为各位同学整理了高二数学三角函数诱导公式知识点,供大家参考学习。
更多各科知识点请关注新高中频道。
三角函数的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tan公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot公式五:利用公式一和公式三可以得到2与的三角函数值之间的关系:sin(2)=-sincos(2)=costan(2)=-tancot(2)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sincot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan(以上kZ)对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC。
高一数学三角函数诱导公式知识点高一诱导公式六个如下:公式一:sin(2kπ+α)=sinα(k∈Z)。
cos(2kπ+α)=cosα(k∈Z)。
tan(2kπ+α)=tanα(k∈Z)。
公式二:sin(π+α)=-sinα。
cos(π+α)=-cosα。
tan(π+α)=tanα。
公式三:sin(-α)=-sinα。
cos(-α)=cosα。
tan(-α)=-tanα。
公式四:sin(π-α)=sinα。
cos(π-α)=-cosα。
tan(π-α)=-tanα。
公式五:sin(2π-α)=-sinα。
cos(2π-α)=cosα。
tan(2π-α)=-tanα。
公式六:sin(π/2+α)=cosα。
cos(π/2+α)=-sinα。
tan(π/2+α)=-cotα。
诱导公式记忆口诀规律为:对于π/2*k±α(k∈Z)的三角函数值:1、当k是偶数时,得到α的同名函数值,即函数名不改变。
2、当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。
(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα。
上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α。
所在象限的原三角函数值的符号可记忆。
【高中诱导公式大全】高考数学一轮复习资料!公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
规律总结上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高中三角函数诱导公式知识点总结高中三角函数诱导公式知识1
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinαk∈zcos(2kπ+α)=cosαk∈ztan(2kπ+α)=tanαk∈z
cot(2kπ+α)=cotαk∈z
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosα
tan(π-α)=-tanαcot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosα
tan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotα
cot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-
α)=cotαcot(π/2-α)=tanα
高中数学三角函数的诱导公式二
推算公式:3π/2±α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotα
cot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-
α)=cotαcot(3π/2-α)=tanα
高学习方法
1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。
2.二次函数,二次方程不仅是初中重点,也是难点。
在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。
3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。
4.判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。
而且还能判断二次函数零点的情况,人教版必修一就会学到。
集合里面有许多题也要用到。
高中数学的
1.口诀记忆法
高中数学中,有些方法如果能编成或歌诀,可以帮助记忆。
例如,根据一元二次不等式
ax2+bx+c>0(a>0,△>0)与ax2+bx+c<0(a>0,△>0)的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。
即两个一次因式之积(或商)大于0,解答在两根之外;两个一次因式之积(或商)小于0,解答在两根之内。
当然,使用口诀时,必先将各个一次因式中X 的系数化为正数。
利用口诀时,必先将各个一次因式中X的系数化为正数。
利用这一口诀,我们就很容易写出乘积不
2.形象记忆法
有些知识,如果能借助图形,可以加强记忆。
例如,化函数y=asinx+bcosx(a>0,b>0)为
一个角的三角函数,可以用a、b为直角边作
数和对数函数的图象,可帮助记忆其性质、定义域和值域;利用三角函数的图象,可帮助记忆三角函数的性质、符号、定义、值域、增减性、周期性、被值;利用二次函数的图象,可帮助记忆抛物线的性质——开口、顶点、对称轴和极值。
3.表格记忆法
有些知识借助表格也能帮助记忆。
例如,0°、30°、45°、60°、90°等特殊角的三角函数值;等差与等比数列的定义、一般形式、通项公式an、前n项的和sn性质及注意事项;指数
与对数函数的定
义、图象、定义域、值域及性质;反三角函数的定义、图象、定义域、主值区间、增减性及有关公式;最简三角方程的通值公式等等,都可以用表格帮助记忆。
有些数学题的解题方法,也可以用表格化难为易、驭繁为简。
例如,用列表法解乘积或分式不等式,解含绝对值符号的方
程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法
在复习中尤其应该提
4.联想记忆法
对新知识可以联想已牢固记忆的旧知识,用类比的方法来帮助记忆。
例如:高次方程的根与系数的关系,可以类比二次方程的韦达定理来帮助记忆;一元n次多项式的因式分解定理可以类比二次三项式因式分解定理来帮助记忆。
有些数学题的解法也可以用联想的方法帮助记忆。
例如,联想到实数的有序性,我们容易写出乘积不等式(2x+1)(x-3)(x-1)(2x+5)
等式的一个范围内的解。
写出了这个范围的解,其余范围的解就可以每隔一个区间向前很
顺利地写出。
可见,将每一个一次因式中X的系数都化为正数后,用实数的有序性来解乘积或
分式不等式是十分方便的。
5.分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。
例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);
(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。
求导法则有7个,可分为两组来记:(1)和差、积、商复合函数的导数(4个);
(2)反函数、隐函数、幂指函数的导数(3个)。
6.“四多”记忆法
要使记忆对象经久不忘,一般来说要经过多次反复的感知。
“四多”即多看、多听、多读、多写。
特别是边读边默写,记忆效果更佳。
例如,甲对某组公式单纯抄写四次,乙对同组公式抄写两次然后默写(默写不出时可看书)两次,实验证明,乙的记忆效果优于甲。