各型平板探测器的工作原理及优缺点对比分析(最全)word资料
- 格式:doc
- 大小:1.34 MB
- 文档页数:13
各类探探测器优劣比较三大类探测器比较(闪烁体、半导体、电离室)(闪烁体)碘化钠探头:他的激活剂是(TI),对γ射线,当能量大于150keV时响应是线性的;对质子和电子,线性响应范围很宽,光输出和能量的关系接近通过原点的直线,仅在能量低于几百keV(对电子)和(1~2)MeV(对质子)时才偏离直线;对α粒子,能量大于4~5MeV后近似线性,但其直线部分延长不过原点。
因此测量α粒子(或其他重粒子)时,比须进行能量校准。
NaI(TI)烁体的主要优点是密度大,原子序数高,因而对γ射线探测效率高。
另外它的发光效率高,因而能量分辨率也较好。
它的缺点是容易潮解,因此使用必须密封。
碘化铯探头:CsI(TI)碘化铯是另一种碱金属卤化物,作为闪烁体材料常用铊或纳作激活剂。
铊的能量线性与碘化钠的接近,能量分辨率比碘化钠的差一些。
碘化铯的密度和平均原子序数比碘化钠更大,因此对γ射线的探测效率也更高。
与碘化钠相比,碘化铯的机械强度大,易于加工成薄片或做成极薄的蒸发薄膜。
此外,它不易潮解,也不易氧化。
但若暴露在水或高湿度环境中它也会变质。
碘化铯的主要缺点是光输出比较低,原材料价格较贵。
锗酸铋探头:与碘化钠(TI)同体积时,探测效率比碘化钠的高的多。
对0.511MeV γ光子,与NaI(TI)、CsF、和Ge半导体、塑料闪烁体相比,锗酸铋(BGO)有最大的效率和最好的信噪比。
BGO主要用于探测低能x射线、高能γ射线以及高能电子。
在低能区(<<0.5MeV)的能量分辨率比碘化钠的差,例如对于0.511MeV的γ射线,BGO的时间分辨为1.9ns,而碘化钠NaI(TI)的的为0.75ns。
BGO的主要缺点是折射率较高,尺寸大的BGO难以将光输出去。
价格高。
硫化锌:ZnS(Ag)它对α粒子的发光效率高,而对γ射线和电子不灵敏,很适合在强β、γ本底下探测重带点粒子如α、核裂片等,探测效率可达100%。
laBr3是新型卤化物闪烁体,其基本性能已经全面超越了传统的碘化钠闪烁体,谱仪具有比碘化钠更好的能量分辨率、峰形和稳定性。
平板探测器的原理及应用1. 简介平板探测器是一种常用于科学研究和工业应用的探测器,其原理基于能量的转换和信号的放大,可以实现对多种物理量或信号的检测和测量。
本文将介绍平板探测器的原理和应用领域。
2. 原理平板探测器的工作原理基于能量的转换,通过将被测量的物理量转换为电荷或电压信号来实现信号的采集和处理。
2.1 材料选择平板探测器的材料选择非常重要,常见的材料有硅(Si)、镓(GaAs)、硅锗(Ge)等。
这些材料具有良好的导电性能和较高的灵敏度,能够实现高效的能量转换。
2.2 结构设计平板探测器通常由P型半导体和N型半导体组成的PN结构构成。
当外加电压施加于其上时,形成电场,当有质子或光子等粒子进入探测器时,引起PN结内的电离和电荷产生。
这些电荷会在电场的驱动下漂移至电极,产生电流或电压信号。
3. 应用领域平板探测器由于其灵敏度高、响应快等特点,在许多领域得到广泛应用。
3.1 核物理平板探测器在核物理研究中扮演着重要角色,因为它能够探测到高能粒子、射线等。
在核物理实验中,平板探测器可以用于测量实验样品中的粒子能谱、运动轨迹以及粒子的电荷和能量等信息。
3.2 生命科学在生命科学研究中,平板探测器可用于细胞测量、蛋白质分析,甚至用于药物研发和基因检测等领域。
平板探测器能够提供准确的数据,并帮助科学家更好地了解生命现象。
3.3 材料科学平板探测器在材料科学中被广泛应用于材料分析和性能测试等。
通过对材料中的粒子进行测量和分析,可以评估材料的成分、结构和性能,从而指导材料的制备过程和应用。
3.4 辐射检测平板探测器能够探测和测量各种辐射,包括射线、γ射线、X射线等。
在辐射监测和辐射治疗等领域,平板探测器可用于监测辐射剂量,确保人员和环境的安全。
4. 总结平板探测器是一种重要的科学仪器,其原理基于能量的转换和信号的放大。
通过选择适当的材料和合理的结构设计,可以实现高效、准确的信号检测和测量。
平板探测器在核物理、生命科学、材料科学和辐射检测等领域都有广泛的应用。
平板探测器的原理及应用
平板探测器中的电离辐射会通过探测电极产生电离电子和正离子,电离电子和正离子分别向两个不同的方向运动,由于探测电极上的电位差,会使得电离电子和正离子受到电场力的作用向探测电极移动。
当电离粒子通过探测电极时,会引起电荷耦合效应,形成电子-空穴对,从而产生一个电荷脉冲信号。
在核科学上,平板探测器被用于测量原子核的衰变,分析放射性同位素的特性和测量核反应截面等。
在医学诊断上,平板探测器被用于放射性核素的摄取和分布的测量,如核医学诊断中的放射性核素显像。
在辐射防护中,平板探测器被用于监测环境中的辐射水平,评估辐射安全性。
在生物学研究中,平板探测器被用于研究辐射对生物体的影响,如细胞辐射治疗和基因突变的研究。
在材料分析中,平板探测器被用于测量材料中的辐射损伤和材料中的杂质。
此外,平板探测器还可以用于探测宇宙线、太阳风和宇宙微射线等天文学研究。
总之,平板探测器通过测量电离辐射产生的电荷脉冲信号来实现对电离辐射能量和粒子数目的测量。
由于其结构紧凑、易于制造和使用以及精确的测量能力,平板探测器被广泛应用于核科学、医学诊断、辐射防护、生物学研究和材料分析等领域中。
(一)在数字化摄片中,X线能量转换成电信号是通过平板探测器来实现的,所以平板探测器的特性会对DR图像质量产生比较大的影响。
选择DR必然要考虑到平板探测器的选择。
平板探测器的性能指标会对图像产生很大的影响,医院也应当根据实际需要选择适合自己的平板探测器。
DR平板探测器可以分为两种:非晶硒平板探测器和非晶硅平板探测器,从能量转换的方式来看,前者属于直接转换平板探测器,后者属于间接转换平板探测器。
非晶硒平板探测器主要由非晶硒层TFT构成。
入射的X射线使硒层产生电子空穴对,在外加偏压电场作用下,电子和空穴对向相反的方向移动形成电流,电流在薄膜晶体管中形成储存电荷。
每一个晶体管的储存电荷量对应于入射X射线的剂量,通过读出电路可以知道每一点的电荷量,进而知道每点的X线剂量。
由于非晶硒不产生可见光,没有散射线的影响,因此可以获得比较高的空间分辨率。
非晶硅平板探测器由碘化铯等闪烁晶体涂层与薄膜晶体管或电荷耦合器件或互补型金属氧化物半导体构成它的工作过程一般分为两步,首先闪烁晶体涂层将X线的能量转换成可见光;其次TFT或者CCD,或CMOS将可见光转换成电信号。
由于在这过程中可见光会发生散射,对空间分辨率产生一定的影响。
虽然新工艺中将闪烁体加工成柱状以提高对X线的利用及降低散射,但散射光对空间分辨率的影响不能完全消除。
Ø 不同平板探测器的比较评价平板探测器成像质量的性能指标主要有两个:量子探测效率和空间分辨率。
DQE决定了平板探测器对不同组织密度差异的分辨能力;而空间分辨率决定了对组织细微结构的分辨能力。
考察DQE和空间分辨率可以评估平板探测器的成像能力。
(1)影响平板探测器DQE的因素在非晶硅平板探测器中,影响DQE的因素主要有两个方面:闪烁体的涂层和将可见光转换成电信号的晶体管。
首先闪烁体涂层的材料和工艺影响了X线转换成可见光的能力,因此对DQE会产生影响。
目前常见的闪烁体涂层材料有两种:碘化铯和硫氧化钆。
直接平板探测器的工作原理
直接平板探测器是一种广泛应用于粒子探测的探测器,其工作原理如下:
1. 探测介质:直接平板探测器一般由半导体材料(如硅)制成。
硅具有较高的电子运动率和较小的禁带宽度,适合用于粒子探测。
2. 探测电荷:当粒子进入探测器并与探测介质发生相互作用时,会产生电离效应。
这些电离效应会导致探测介质中的原子或分子失去或获得电荷。
3. 电荷收集:探测器内部设置有电场,可以将电离效应引起的电子和正孔分离。
由于电子和正孔具有相反的电荷,它们会朝着相反的方向移动。
4. 电流测量:探测器两端设置了电极,可以测量电子和正孔在探测介质中移动产生的电流。
电流信号的大小与粒子在探测介质中产生的电离效应数量有关,从而可以反映粒子的能量和轨迹等信息。
5. 信号处理:探测器测得的电流信号会经过放大、滤波和数字化等处理,进而可以通过计算机或其他数据采集系统处理和分析,得到粒子的相关信息。
从1995年RSNA上推出第一台平板探测器(Flat Panel Detector)设备以来,随着近年平板探测技术取得飞跃性的发展,在平板探测器的研发和生产过程中,平板探测技术可分为直接和间接两类。
(一)间接能量转换间接FPD的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层(amorphous Silicon,a-Si)再加TFT阵列构成。
其原理为闪烁体或荧光体层经X射线曝光后,将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,最后获得数字图像。
在间接FPD的图像采集中,由于有转换为可见光的过程,因此会有光的散射问题,从而导致图像的空间分辨率极对比度解析能力的降低。
换闪烁体目前主要有碘化铯(CsI,也用于影像增强器),荧光体则有硫氧化钆(GdSO,也用于增感屏),采用CsI+a-Si+TFT结构的有Trixell和GE公司等,而采用GdSO+a-Si+TFT有Canon和瓦里安公司等。
1、碘化铯( CsI ) + a-Si + TFT :当有X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比。
发展此类技术的有法国Trixell 公司解像度143um2 探测器( SIEMENS、Philips、汤姆逊合资) 、美国GE 解像度200um2 探测器( 收购的EG & G 公司) 等。
其原理见右图。
Trixell公司(目前有西门子、飞利浦、万东、上医厂、长青、泛太平洋等厂家使用,成本约9.5万美金)用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。
GE、佳能(佳能、东芝、岛津使用)的平板是使用Csl或Gd2O2S:Tb涂层,因不是柱状晶体结构,所以能量损失较Trixell 严重。
x光机平板探测器原理
X光机平板探测器的原理主要涉及X射线的转换和信号的处理。
首先,X光机发射的X射线穿透物体后,会被平板探测器捕获。
平板探测器主要有两种类型:碘化铯型和非晶硒型。
对于碘化铯型探测器,X射线首先通过荧光介质材料转换为可见光,然后光敏元件将可见光信号转换为电信号,最后通过A/D转换器将模拟电信号转换为数字信号。
而非晶硒型探测器则是光电导半导体直接将接收到的X 射线光子转换为电荷,然后通过薄膜晶体管阵列将电信号读出并数字化。
具体来说,对于碘化铯型探测器,曝光前,阳离子被存储在硅表面上以产生均匀的电荷,形成电子场。
在曝光期间,硅中产生电子-空穴对,并向表面释放自由电子,从而在硅表面产生了潜在的电荷像,每个点的电荷密度等于局部X射线强度。
曝光后,X射线图像存储在每个像素中,半导体转换器读取每个元素并完成模数转换。
而对于非晶硒型探测器,X射线入射光子会激发非晶硒层中的电子-空穴对,电子和空穴在外部电场的作用下以相反的方向移动以产生电流,电流的大小与入射的X射线有关。
无论哪种类型的探测器,转换后的数字信号都会被传输到计算机进行进一步处理。
计算机通过重建软件将这些数字信号转化为能在屏幕上显示的内容,从而生成我们看到的X光图像。
此外,平板探测器还具备体积小、便于携带的优点,只需一台平板探测器和一台电脑,就可以方便地进行外出体检或工厂、学校的临时体检。
综上,X光机平板探测器的工作原理主要是将X射线转换为可见光或电荷,再将光信号或电荷信号转换为电信号,最后通过A/D转换和数字处理,生成可在屏幕上显示的X光图像。
不同原理的金属探测器有何优缺点一、地下金属探测器品牌排行榜1、美国费舍尔FISHER地下金属探测器2、泰尼克斯地下金属探测器3、盖瑞特地下金属探测器4、德国OKM地下金属探测器5、怀特地下金属探测器6、天狼星地下金属探测器7、土耳其Nokta地下金属探测器8、MP地下金属探测器9、觅宝地下金属探测器10、犬神从榜单中不难看出,美国Fisher金属探测器基本位于前一、二名的位置。
在低端金属探测器中,犬神首战告捷。
美国费舍尔获得销量第一。
而美国Teknetics泰尼克斯在这次榜单中,紧随美国Fisher,在全球排名第二的位置。
盖瑞特也表现不俗,名列前三甲。
根据美国最具影响力期刊《纽约日报》报道:美国Fisher费舍尔公司研发出了世界首台地下金属探测器。
经过近百年的潜心研究,已经成为了世界上最具影响力的品牌。
Fisher金属探测器使用的是最前沿的技术,一举飙升为消费者最信赖的品牌,深受探宝爱好者喜爱。
是因为它的多功能型、大深度、高灵敏度,在地平衡方面做得也是最好的,能很好的排除矿化反应,一直是其他探测器品牌商模仿的标杆品牌。
美国Teknetics泰尼克斯在中高端产品中表现尚可,其中性价比最高的一款delta 4000多功能探测器,尤其适合组队探宝、户外娱乐等,是中级、初级探宝爱好者的首选。
美国费舍尔金属探测器最知名的一款型号是PRO-ARC考古专家,这款探测器是美国T2和费舍尔F75的升级版。
Pro-Arc使用导电弧型显示屏,可视不同种类的目标金属,同时,显示屏还具有背光功能,可以在全黑或微光环境下使用,是考古学家、探墓学家的好帮手。
银币大小的探测深度为16英寸(40cm以上),目标越大、导电性越好、埋藏时间越长、土质越好,探测深度越深。
具有静态全金属和动态全金属操作模式、金属判别模式、超深探测模式。
他不但灵敏度超高,而且能可视探测到的什么金属。
具有目标信心度指示功能,对探测经验很少的探宝爱好者来说,经验的积累速度会比以往快好多,更容易上手。
平板探测器原理从1995年RSNA上推出第一台平板探测器(Flat Panel Detector)设备以来,随着近年平板探测技术取得飞跃性的发展,在平板探测器的研发和生产过程中,平板探测技术可分为直接和间接两类。
(一)间接能量转换间接FPD的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层(amorphous Silicon,a-Si)再加TFT阵列构成。
其原理为闪烁体或荧光体层经X射线曝光后,将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,最后获得数字图像。
在间接FPD的图像采集中,由于有转换为可见光的过程,因此会有光的散射问题,从而导致图像的空间分辨率极对比度解析能力的降低。
换闪烁体目前主要有碘化铯(CsI,也用于影像增强器),荧光体则有硫氧化钆(GdSO,也用于增感屏),采用CsI+a-Si+TFT结构的有Trixell和GE公司等,而采用GdSO+a-Si+TFT有Canon和瓦里安公司等。
1、碘化铯( CsI ) + a-Si + TFT :当有X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比。
发展此类技术的有法国Trixell 公司解像度143um2 探测器( SIEMENS、Philips、汤姆逊合资) 、美国GE 解像度200um2 探测器( 收购的EG & G 公司) 等。
其原理见右图。
Trixell公司(目前有西门子、飞利浦、万东、上医厂、长青、泛太平洋等厂家使用,成本约9.5万美金)用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。
探测器原理大全范文探测器是一种用于检测物质、能量或者现象的仪器。
它们广泛应用于科学研究、工业生产、环境监测等领域。
不同的探测器使用不同的原理来感知目标,下面将介绍一些常见的探测器原理。
1.光电探测器光电探测器是利用光电效应原理进行工作的。
光线通过探测器产生的电流或电荷,可用于测量光的强度、频率、波长等。
常见的光电探测器包括光电二极管、光电倍增管、光电子倍增管、光电导和光电子器件。
2.激光雷达激光雷达利用激光束的反射来测量目标的距离和形状。
激光束发射出去后,通过测量激光束的传播时间来计算目标的距离。
通过改变激光束的角度,可以获取目标的形状和位置。
3.红外探测器红外探测器是利用物体辐射的红外辐射来探测目标的存在。
它可以检测热辐射源,并将其转换为电信号。
红外探测器广泛应用于热成像、安防监控等领域。
4.电化学传感器电化学传感器是利用电化学原理进行测量的探测器。
它通过测量电流或电势变化来检测目标物质的浓度、氧化还原状态等。
常见的电化学传感器包括pH传感器、氧气传感器和电导率传感器。
5.声纳探测器声纳探测器是利用声波进行探测的设备。
它通过发射声波信号并接收回波信号来测量目标的距离和位置。
声纳探测器广泛应用于水下探测、鱼群定位等领域。
6.微波雷达微波雷达是利用微波信号进行探测的设备。
它通过发射微波信号并接收回波信号来测量目标的距离和速度。
微波雷达广泛应用于航空、天气预报等领域。
7.粒子探测器粒子探测器是用于测量宇宙射线、粒子束等高能粒子的设备。
常见的粒子探测器包括电离室、时间投影室和多丝比例计。
8.化学传感器化学传感器是用于检测化学物质浓度、化学反应等的设备。
它们使用特定的反应物质与目标物质发生反应,并通过测量反应产生的信号来检测目标物质。
常见的化学传感器包括气体传感器、生物传感器和电化学传感器。
9.磁传感器磁传感器是用于测量磁场强度和方向的设备。
它们通过测量磁场对传感器产生的力或磁场对传感器产生的电磁感应来检测磁场。
从1995年RSNA上推出第一台平板探测器(Flat Panel Detector)设备以来,随着近年平板探测技术取得飞跃性的发展,在平板探测器的研发和生产过程中,平板探测技术可分为直接和间接两类。
(一)间接能量转换间接FPD的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层(amorphous Silicon,a-Si)再加TFT阵列构成。
其原理为闪烁体或荧光体层经X射线曝光后,将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,最后获得数字图像。
在间接FPD的图像采集中,由于有转换为可见光的过程,因此会有光的散射问题,从而导致图像的空间分辨率极对比度解析能力的降低。
换闪烁体目前主要有碘化铯(CsI,也用于影像增强器),荧光体则有硫氧化钆(GdSO,也用于增感屏),采用CsI+a-Si+TFT结构的有Trixell和GE公司等,而采用GdSO+a-Si+TFT有Canon和瓦里安公司等。
1、碘化铯( CsI ) + a-Si + TFT :当有X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比。
发展此类技术的有法国Trixell 公司解像度143um2 探测器( SIEMENS、Philips、汤姆逊合资) 、美国GE 解像度200um2 探测器( 收购的EG & G 公司) 等。
其原理见右图。
Trixell公司(目前有西门子、飞利浦、万东、上医厂、长青、泛太平洋等厂家使用,成本约9.5万美金)用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。
GE、佳能(佳能、东芝、岛津使用)的平板是使用Csl或Gd2O2S:Tb涂层,因不是柱状晶体结构,所以能量损失较Trixell 严重。
平板探测器ct原理
平板探测器CT是一种使用平板探测器技术的计算机断层扫描(CT)。
这种技术允许医生和科学家获得准确、高分辨率的图像,以检测人体内部的异常和疾病。
平板探测器CT技术的基本原理是在人体周围旋转一束X射线,并在其后面放置一系列的平板探测器。
这些探测器会记录通过人体的X射线强度,并转换为数字信号。
计算机将这些信号组合在一起,生成高质量的三维图像。
这种技术比传统的CT扫描技术更加精确和快速。
由于平板探测器的高灵敏度和高分辨率,它可以检测到非常小的异常和病变。
此外,它还可以减少患者的辐射暴露,这对于长期接受CT扫描的患者尤其重要。
虽然平板探测器CT技术非常先进,但它仍然存在一些限制。
例如,如果周围的组织密度不同,图像可能会出现伪影。
此外,患者体型和移动也可能会影响图像质量。
尽管如此,这项技术仍然是医学领域中重要的一项工具,为医生和研究人员提供了准确、高质量的图像,以帮助诊断和治疗疾病。
- 1 -。
平板探测器性能测试及应用研究平板探测器性能测试及应用研究摘要:平板探测器是一种广泛应用于物理实验和工程领域的重要探测器。
本文就平板探测器的性能测试及应用进行了研究。
首先介绍了平板探测器的基本结构和工作原理,然后对其性能测试方法进行了探讨,包括电离辐射测量、分辨率测试、线性范围测试、噪声水平测试等。
最后,对平板探测器的应用进行了探索和分析,包括核物理实验中的应用、医学成像领域中的应用、空间探测和辐射监测等领域的应用。
通过对平板探测器的性能测试和应用研究,可以更好地了解其潜力和局限,为其在各领域的应用提供理论指导和技术支持。
1. 引言平板探测器是一种半导体探测器,利用感应电荷和电流产生的方法测量辐射的性质和强度。
它具有结构简单、响应速度快、能量分辨率高等优点,因此在物理实验和工程领域得到广泛应用。
为了更好地了解平板探测器的性能和应用,本文对其进行了深入的研究和分析。
2. 平板探测器的基本结构和工作原理平板探测器由P型和N型半导体材料组成,两者之间通过P-N 结连接。
当探测器受到辐射或粒子作用时,会产生离子化,使得P-N结区域中的电荷发生移动,产生电流。
通过测量这个电流的强度和性质,就可以确定辐射的能量和性质。
3. 平板探测器的性能测试方法为了评估平板探测器的性能,需要进行一系列的测试。
首先是电离辐射测量,通过测量在探测器中产生的电荷量和电流,来确定辐射的能量和强度。
其次是分辨率测试,用于评估平板探测器对不同能量的辐射的分辨能力。
然后是线性范围测试,用于确定平板探测器在不同辐射强度下的线性响应范围。
最后是噪声水平测试,用于评估平板探测器的噪声水平,以确定信号检测的可靠性和准确性。
4. 平板探测器的应用研究平板探测器在各个领域都有广泛的应用。
首先是核物理实验中的应用,可以用于测量辐射源的能量和强度,研究核反应和粒子物理现象等。
其次是医学成像领域中的应用,可以用于X射线和伽马射线的检测和成像,帮助医生做出诊断。
各型平板探测器的工作原理及优缺点(一)碘化铯/非晶硅型:概括原理:X线先经荧光介质材料转换成可见光,再由光敏元件将可见光信号转换成电信号,最后将模拟电信号经A/D转换成数字信号。
具体原理:1、曝光前,先使硅表面存储阳离子而产生均一电荷,导致在硅表面产生电子场;2、曝光期间,在硅内产生电子-空穴对,且自由电子游离到表面,导致在硅表面产生潜在的电荷影像,在每一点上电荷密度与局部X线强度相当。
3、曝光后,X线图像被储存在每一个像素中;4、半导体转换器读出每一个素,完成模数转换。
优点:1、转换效率高;2、动态范围广;3、空间分辨率高;4、在低分辨率区X线吸收率高(原因是其原子序数高于非晶硒);5、环境适应性强。
缺点:1、高剂量时DQE不如非晶硒型;2、因有荧光转换层故存在轻微散射效应;3、锐利度相对略低于非晶硒型。
佳能DR已独家采用目前世界上最先进的荧光介质氧化钆,有效弥补和改善了上述缺点。
(二)非晶硒型概括原理:光导半导体直接将接收的X线光子转换成电荷,再由薄膜晶体管阵列将电信号读出并数字化。
具体原理:1、X 线入射光子在非晶硒层激发出电子-空穴对;2、电子和空穴在外加电场的作用下做反向运动,产生电流,电流的大小与入射的X线光子数量成正比;3、这些电流信号被存储在TFT的极间电容上,每一个TFT和电容就形成一个像素单元。
优点:1、转换效率高;2、动态范围广;3、空间分辨率高;4、锐利度好;缺点:1、对X线吸收率低,在低剂量条件下图像质量不能很好的保证,而加大X线剂量,不但加大病源射线吸收,且对X光系统要求过高。
2、硒层对温度敏感,使用条件受限,环境适应性差。
(三)CCD型概括原理:由增感屏作为X线的交互介质,加CCD来数字化X 线图像。
具体原理:以MOS电容器型为例:是在P型Si的表面生成一层SiO2,再在上面蒸镀一层多晶硅作为电极,给电极P型Si 衬底加一电压,在电极下面就形成了一个低势能区,即势阱。
无线平板探测器的原理无线平板探测器是一种利用无线电波技术来探测和测量物体位置、尺寸和运动状态的设备。
它主要由无线电收发模块、处理单元和平板天线组成。
下面将详细介绍无线平板探测器的原理和工作方式。
1. 无线电波传播无线平板探测器利用无线电波在空间中传播的特性进行探测。
无线电波是由电磁场变化产生的电磁波,其传播速度与光速相同。
无线电波的传播可通过调制和解调技术来实现信息传输。
2. 探测原理无线平板探测器通过发射一定频率的无线电波,并接收由物体反射回来的信号,从而实现对物体位置、尺寸和运动状态的探测。
当发射的无线电波遇到物体时,会发生散射、反射和绕射等现象。
探测器利用这些现象来对物体进行探测和测量。
3. 无线电收发模块无线平板探测器的无线电收发模块是探测器的核心部分,主要用于发射和接收无线电波。
无线收发模块通常由射频发射器和射频接收器组成。
发射器将输入的电信号转换为对应频率的无线电波,并通过平板天线发射出去。
接收器则接收反射回来的信号,并将其转换为电信号。
4. 处理单元处理单元是无线平板探测器的主要控制和处理部分,负责控制无线电收发模块的工作,并对接收到的信号进行分析和处理。
根据探测需要,处理单元可以实现信号的滤波、增益调整、解调和数字化等功能。
同时,处理单元还可以通过算法和模型对接收到的信号进行分析和处理,从而得到所需的物体位置、尺寸和运动状态等信息。
5. 平板天线平板天线是无线平板探测器的发射和接收装置。
它通过发射和接收无线电波来实现对物体的探测。
平板天线通常采用定向天线,可以将无线电波的辐射和接收方向进行控制。
根据探测要求,可以设计不同形状和尺寸的平板天线,以实现不同的探测和测量需求。
6. 工作原理无线平板探测器的工作原理可以分为发射和接收两个过程。
首先,发射器将输入的信号转换为一定频率的无线电波,并通过平板天线发射出去。
然后,无线电波遇到物体时,部分能量将被物体吸收,部分能量将发生散射、反射和绕射等现象。
从1995年RSNA上推出第一台平板探测器(Flat Panel Detector)设备以来,随着近年平板探测技术取得飞跃性的发展,在平板探测器的研发和生产过程中,平板探测技术可分为直接和间接两类。
(一)间接能量转换间接FPD的结构主要是由闪烁体或荧光体层加具有光电二极管作用的非晶硅层(amorphous Silicon,a-Si)再加TFT阵列构成。
其原理为闪烁体或荧光体层经X射线曝光后,将X射线光子转换为可见光,而后由具有光电二极管作用的非晶硅层变为图像电信号,最后获得数字图像。
在间接FPD的图像采集中,由于有转换为可见光的过程,因此会有光的散射问题,从而导致图像的空间分辨率极对比度解析能力的降低。
换闪烁体目前主要有碘化铯(CsI,也用于影像增强器),荧光体则有硫氧化钆(GdSO,也用于增感屏),采用CsI+a-Si+TFT结构的有Trixell和GE公司等,而采用GdSO+a-Si+TFT有Canon和瓦里安公司等。
1、碘化铯( CsI ) + a-Si + TFT :当有X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比。
发展此类技术的有法国Trixell 公司解像度143um2 探测器( SIEMENS、Philips、汤姆逊合资) 、美国GE 解像度200um2 探测器( 收购的EG & G 公司) 等。
其原理见右图。
Trixell 公司(目前有西门子、飞利浦、万东、上医厂、长青、泛太平洋等厂家使用,成本约9.5万美金)用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。
平板探测器工作原理平板探测器是一种用于探测和测量辐射的装置,广泛应用于核能领域、医学影像学、天文学等领域。
它的工作原理是基于辐射与物质相互作用的过程。
平板探测器的核心部件是一块具有正、负电极的探测器晶片,通常由硅或硒化锌等材料制成。
当辐射射线通过探测器晶片时,它与晶片内的原子核或电子发生相互作用,引起能量损失。
这些能量损失将被转化为电信号,并通过正、负电极之间的电场收集和放大。
平板探测器的工作原理可以通过以下几个步骤来解释:1. 能量沉积:当辐射射线通过探测器晶片时,它与晶片内的原子核或电子碰撞,引起能量沉积。
能量沉积越大,探测器晶片中的电子数目越多。
2. 电离产生:能量沉积导致探测器晶片中的原子被激发或电离,释放出自由电子和空穴。
这些自由电子和空穴被电场推动向探测器晶片的正、负电极运动。
3. 电荷收集:自由电子和空穴通过电场被推向探测器晶片的正、负电极。
正、负电极之间的电位差导致电子和空穴被加速,提高它们的能量,并最终导致它们在电极上形成脉冲信号。
4. 信号放大:探测器晶片上形成的电子和空穴脉冲信号被传输到信号放大器中,在那里被放大,使其可以被进一步测量和分析。
平板探测器的灵敏度和分辨率与多种因素相关,如探测器晶片的材料属性、电场设置、能量沉积和电荷收集效率等。
探测器晶片的材料属性决定了它的能量沉积和电离产生能力,而电场设置则影响了电子和空穴的移动速度和方向,从而影响了电荷收集效率。
通过适当设计探测器晶片的结构和电场分布,可以提高平板探测器的灵敏度和分辨率。
总之,平板探测器工作原理是基于辐射与物质相互作用的过程。
它利用探测器晶片中的能量沉积和电荷收集过程来测量辐射的能量和强度。
通过优化探测器晶片的设计和电场设置,可以提高平板探测器的性能,实现更高的灵敏度和分辨率。
各型平板探测器的工作原理及优缺点对比分析(最全)word资料摄像头的工作原理说明加电路图随着中国网络事业的发展(直接的说,电脑的外部环境的变化→宽带网络的普及),大家对电脑摄像头的需求也就慢慢的加强。
比如用他来处理一些网络可视、视频监控、数码摄影和影音处理等。
话说回来,由于其的相对价格比较低廉(数码摄象机、数码照相机),技术含量不是太高,所以生产的厂家也就多了起来,中国IT市场就是如此,产品的质量和指标也就有比较大的差距。
一、首先来看看感光材料一般市场上的感光材料可以分为:CCD(电荷耦合)和CMOS(金属氧化物)两种。
前一种的优点是成像像素高,清晰度高,色彩还原系数高,经常应用在高档次数码摄像机、数码照相机中,缺点是价格比较昂贵,耗功较大。
后者缺点正好和前者互普,价格相对低廉,耗功也较小,但是,在成像方面要差一些。
如果你是需要效果好点的话,那么你就选购CCD元件的,但是你需要的¥就多一点了!二、像素也是一个关键指标现在市面上主流产品像素一般在130万左右,早些时候也出了一些10-30万左右像素的产品,由于技术含量相对较低效果不是很好,不久就退出舞台了。
这个时候也许有人会问,那是不是像素越高越好呢?从一般角度说是的。
但是从另一个方面来看也就不是那么了,对于同一个画面来说,像素高的产品他的解析图象能力就更高,呵呵,那么你所需要的存储器的容量就要很大了。
不然……我还是建议如果你选购的时候还是选购市面上比较主流的产品。
毕竟将来如果出问题了保修也比较好。
三、分辨率是大家谈的比较多的问题我想我没有必要到这里说分辨率这个东东了,大家最熟悉的应该就是:A:你的显示器什么什么品牌的。
分辨率可以上到多高,刷新率呢?B:呵呵,还好了,我用在1024*768 ,设计的时候就用在1280*1024。
玩游戏一般就800*600了。
但是摄像头的分辨率可不完全等同于显示器,切切的说,摄像头分辨率就是摄像头解析图象的能力。
现在市面上较多的CMOS的一般在640*480,有是也会在800*600。
但是如果是CCD的一般还要高些。
四、是摄像头,当然也要比较摄像的效果摄像头的视频捕获能力是用户最关心的了,目前电脑摄像头所能够捕捉都是通过软件来实现的,因此对电脑要求比较高,一般情况下640*480他的速度可以到达30帧/S,但当分辨率在320*240的状态下,速度稍微一快点。
因而,自己在选购是,可以按照自己的作用选择一个合适自己的。
五、镜头是一个大问题估计这么东东很多用户在购买的时候会忽视掉,但这却是摄像头对光线的最重要部位。
光圈的大小、镜头可调焦的范围等等。
一般按照材料分主要有3中,有玻璃镜片;塑胶镜片和化合物的,这里最好的要算是玻璃的,他的通光系数大,一般好的镜头他的通光口径也会做的较大,在光线不是很好的时候也可以得到交好的效果,但是价格要高点(一分钱一分货)。
塑胶的通光要差点,但是价格便宜,就这点也得到了一些中低端用户的认可。
化合物的市面上不是很多,这里就不做详细介绍了。
六、其他数据虽然说,现在的应用程序比较多,自己也比较好找,但是一个名牌产品,他里面的东西都很到位,通常会有拍照、摄像、影像文件管理、设置,有的摄像头带有MIR功能,那么软件方面还需要有音频方面的设置。
再来看看接口方面,以前的摄像头都是采用并口,但是随着技术的进步,慢慢的被USB的接口给取代了,这里千万提醒你一点,不要为了一点小利(¥)而放弃了USB接口的产品。
毕竟并口退出舞台了小知识:摄像头的镜头最好的是玻璃镜头,最便宜的是塑料镜头,最常见的是塑料与玻璃的混合镜头。
塑料镜头透光率低,常用于低端摄像头。
主流的玻璃、塑料混合摄像头一般是由两片玻璃镜片和若干塑料镜片组成。
全玻璃镜片通常有5片玻璃组成,透光率好。
好的镜头镜片上会有镀膜以保证好的透光率。
不过我们凭肉眼是不能判断出镜头是由几片玻璃或塑料镜片构成。
要想知道为什么厂家不能自己把镜头做大,我们还得先来了解下摄像头的内部结构。
大部分去掉外壳的摄像头,内部都是一样的——由镜头、CMOS 传感器、PCB板和DSP控制芯片组成(图4,有少数低价格摄像头的CMOS 传感器和DSP控制芯片是整合的)。
外面的景象通过镜头反映到CMOS上转换为电信号,经过A/D(模/数转换)转换为数字图像信号,再送到DSP控制芯片中加工处理,通过USB接口传输到电脑中,最后我们就可以看到图像了。
其中CMOS、DSP都是由第三方厂家设计生产,我们称其为“方案”。
目前性价比最高的,采用得非常多的方案就是中星微ZC0301PLH+美光360的CM OS传感器组成的(图5)。
当CMOS和DSP控制芯片定下来后,厂家会自己选择最适合该方案的摄像头,因为第三方厂家提供的是一个通用方案,很多厂家都可以用,因此采用的摄像头大小基本也是相同的。
美光360 CMOS传感器如果厂家特立独行,非要自己采用不适合某种方案的镜头,不仅会造成成本的增加,在成像质量上也不会有任何改观。
要有好的噱头,当然也只能在镜头的最外面加一块看似“大镜头”的塑料以混淆视听。
so.bitsCN 网管资料库任你搜逗你玩的30帧/秒谎言:“影像捕捉速率:每秒30帧”“影像捕捉速率:每秒30帧”这句话本身没有错,问题就出在它没有把话说完,如果是30万像素的摄像头,在分辨率为320×280的时候,能达到30帧/秒的速度,这个时候我们看图像应该是没有明显的延迟现象的。
将分辨率调到30万像素摄像头能支持的最大分辨率640×480的时候,帧数也只有大约11帧/秒。
要保证摄像头在高分辨率下也能有高的帧数,至少首先要满足接口为USB 2.0这个重要条件,就30万像素的摄像头而言,如果在640×480的分辨率下要达到30帧/秒,至少需要接口有27Mbps的带宽,而目前大多数的摄像头采用的还是USB1.1接口,仅能提供12Mbps的带宽。
其次就算是摄像头采用了USB2.0的接口,要用130万像素的摄像头在达1280×960的分辨率下达到30帧也是不现实的,因为现在摄像头的硬件压缩技术还没发展到这个地步,也无法在主流的电脑上通过软件进行实时地视频压缩。
所以,每秒30帧的说法只是个来蒙蔽你眼睛的障眼法而已。
摄像头的工作原理大致为:景物通过镜头(LENS)生成的光学图像投射到图像传感器(SENSOR)(*注1)表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)(*注2)中加工处理,再通过USB接口传输到电脑中处理,通过显示器就可以看到图像了。
工作原理篇:摄像头(CAMERA)主要分数字摄像头和模拟摄像头两种,模拟摄像头即那种可以直接通过视频接口(通常为S端子或AV端子)连接显示设备(一般指电视机或监视器)完成摄像功能的摄像头,特点是模拟影像清晰而连贯,不受分辨率影响,模拟摄像头以中低价位黑白摄像头为主;而数字摄像头可以直接捕捉影像并转换为数字信号存储在电脑里,其信号传输接口发展由早期的串口、并口发展到如今的USB2.0和IEEE1394火线接口,我们这里主要涉及的PC 摄像头,其主流就是指USB接口的数字摄像头。
注1:图像传感器(SENSO R)是一种半导体芯片,其表面包含有几十万到几百万的光电二极管。
光电二极管受到光照射时,就会产生电荷。
注2:数字信号处理芯片DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC 等设备。
摄像头,像眼球了解摄像头,首先就要了解它的工作原理。
为了方便大家理解,我们拿人的眼睛来打个比方。
当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。
摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,CMOS就会感知到图像。
图像信息通过PCB板传到摄像头的“大脑”——DSP芯片,经过芯片处理后的信息经过US B线传输就让我们看见摄像头“看见”的物体了。
眼球结构图从这个工作过程,我们可以分析出摄像头几个关键部分:镜头、CMOS、DSP 芯片。
所以我们在购买时也应该注意这几个点。
镜头分为塑料、玻璃、玻璃塑料混合三种,玻璃的透光度最佳,但成本也高,一般来说玻璃摄像头会镀膜以增加亮度;而塑料和玻璃塑料混合则不会镀膜,为的是减少成本。
COMS和D SP芯片搭配我们称之为方案,中星微的DSP芯片市场占有量相当大,性能和质量都也被大家所认可,CMOS方面则以镁光的为主,而且大多数方案都是经过测试,制定好了的,所以大家挑选时只注意一下芯片品牌就可以了。
小知识:我们常说的摄像头传感器相当于传统相机的胶片,传感器是摄像头的核心,也是最关键的技术,它是一种用来接收通过镜头的光线,并且将这些光信号转换成为电信号的装置。
目前摄像头的核心成像部件有两种:一种是CMOS (互补金属氧化物导体)器件,多用在摄像头上,另一种是CCD(电荷藕合)元件,多见于数码相机中。
免驱在手,懒人不愁有人会问:“免驱、免驱就是免去驱动吧?”不准确。
严格来说免驱并不是真正不需要驱动,只是驱动程序不用自己去安装罢了。
要实现免驱,需要摄像头和操作系统达成某个协议,协议早就准备妥当,它叫UVC即USB Video Cla ss,是USB组织定义的视频设备类标准协议。
Windows XP SP2以上操作系统也支持这个协议,实现免驱只需要厂家做出满足这个协议的摄像头就可以了。
所以摄像头免驱功能出现也有点万事俱备,只欠东风的味道。
另外,市场上也有一些冒充“免驱”的产品,它们只能在Windows Vista系统下实现无驱,而在其他Windows系统下仍然需要安装驱动。
这些产品只是利用了更新的操作系统支持更多的硬件这一特点来实现“免驱”,不是真正通过支持UVC协议来实现的。
亮度不足,背光补我们在使用摄像头时,常常会觉得画面中的自己不够亮,美丽指数大跌。
为了还我“亮”色,厂家们也就开发出了背光补偿功能。
背光补偿有效地弥补了摄像头在逆光环境下拍摄时画面主体黑暗的缺陷。
为了解释背光补偿,我们还是用眼睛的例子吧,光线越充足,我们看东西很容易看清楚,因此所需的看清物体所需时间越短;光线不足的状况下,我们看东西就很费力,因此所需的时间就越长,这里指的时间,专业点就是曝光时间。
摄像头方面也很类似,当外界光线较弱时,CMOS成像芯片工作电流较小,所成图像偏暗,这时就要让摄像头多“看”一会儿(增加曝光时间)达到背光补偿的效果;同理,光线充足或较强时,要适当减少曝光时间,防止曝光过度图像发白。
你的脸,是重点摄像头很多时候是用来拍人的,脸自然就成为了摄像头重点照顾对象。