因式分解复习课教案
- 格式:docx
- 大小:16.18 KB
- 文档页数:3
中考复习教案《因式分解》一、教学目标1. 掌握因式分解的基本概念和方法。
2. 能够运用提公因式法、公式法、分组分解法等方法进行因式分解。
3. 提高解决实际问题的能力,培养逻辑思维和运算能力。
二、教学重难点1. 重点:因式分解的方法和技巧。
2. 难点:灵活运用各种方法进行因式分解,解决实际问题。
三、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法。
2. 以学生为主体,注重引导学生主动探究、合作交流。
四、教学内容1. 回顾因式分解的基本概念和方法。
2. 提公因式法:找出多项式的公因式,将其提出来进行因式分解。
3. 公式法:运用平方差公式、完全平方公式等进行因式分解。
4. 分组分解法:将多项式中的项进行合理分组,分别进行因式分解。
五、教学过程1. 导入:通过复习已学过的因式分解实例,引发学生对因式分解的兴趣和思考。
2. 新课讲解:讲解提公因式法、公式法、分组分解法等因式分解方法,并结合例题进行演示。
3. 课堂练习:布置一些因式分解的练习题,让学生独立完成,并及时给予指导和反馈。
4. 合作交流:组织学生进行小组讨论,分享各自的解题方法和经验,互相学习和借鉴。
6. 课后作业:布置一些综合性的因式分解题目,让学生进一步巩固所学知识。
六、教学评估1. 课堂练习环节,及时观察学生的掌握情况,针对性地进行个别辅导。
2. 通过课后作业的完成情况,了解学生对因式分解方法的掌握程度。
3. 在下一节课开始时,进行简短的测试,检验学生对上节课内容的复习情况。
七、教学拓展1. 引导学生思考:因式分解在实际生活中的应用,如分解数字、简化表达式等。
2. 鼓励学生探索更多的因式分解方法,提高解决问题的能力。
八、教学反思2. 根据学生的反馈,调整教学方法和策略,以提高教学效果。
九、课后作业1. 完成练习册上的因式分解题目,巩固所学知识。
2. 选择两道具有挑战性的题目进行思考和解答,提高自己的解题能力。
十、教学计划1. 下一节课将继续复习因式分解,重点讲解交叉相乘法和综合除法等高级因式分解技巧。
中考复习教案《因式分解》一、教学目标:1. 理解因式分解的概念和意义。
2. 掌握因式分解的基本方法和技巧。
3. 能够运用因式分解解决实际问题。
二、教学内容:1. 因式分解的定义和性质2. 提公因式法3. 公式法4. 交叉相乘法5. 分解因式的综合应用三、教学重点与难点:1. 教学重点:因式分解的方法和技巧。
2. 教学难点:灵活运用因式分解解决实际问题。
四、教学过程:1. 复习导入:回顾上节课的内容,巩固因式分解的基本概念。
2. 知识讲解:讲解因式分解的定义、性质和各种方法。
3. 例题解析:分析并解答典型的因式分解题目,引导学生掌握解题思路。
4. 课堂练习:布置适量的练习题,让学生巩固所学知识。
5. 总结提升:对本节课的内容进行总结,强调重点和难点。
五、课后作业:1. 完成教材后的练习题。
2. 选择两道难度较高的因式分解题目进行挑战。
3. 总结因式分解的心得体会,下周分享。
注意:教师在教学过程中要注重启发式教学,引导学生主动探索、积极思考,提高学生的动手能力和解决问题的能力。
要注意因材施教,针对不同学生的实际情况进行有针对性的辅导。
六、教学策略与方法:1. 案例分析:通过分析具体的数学案例,让学生理解因式分解的应用场景。
2. 互动讨论:鼓励学生参与课堂讨论,分享自己的解题心得。
3. 小组合作:组织学生进行小组合作,共同解决因式分解问题。
4. 信息技术辅助:利用多媒体教学资源,展示因式分解的动画和步骤,帮助学生形象理解。
七、教学评价:1. 课堂练习:通过课堂上的即时练习,评估学生对因式分解概念和方法的掌握程度。
2. 课后作业:通过学生完成的课后作业,检查其对课堂所学知识的应用能力。
3. 单元测试:安排单元测试,全面评估学生对因式分解的理解和运用能力。
4. 学生反馈:收集学生的学习反馈,了解其在学习过程中的困惑和需求。
八、教学资源:1. 教材:选用权威的数学教材,提供系统的因式分解知识体系。
2. 教学课件:制作精美的教学课件,辅助展示因式分解的步骤和例题。
初中数学因式分解复习教案教案:初中数学因式分解的复习一、教学目标:1.知识目标:了解因式分解的基本概念和步骤,能够正确分解一元多项式。
2.技能目标:掌握因式分解的方法和技巧,能够灵活运用于解决实际问题。
3.过程目标:培养学生的思维逻辑能力和解决问题的能力。
二、教学内容:1.复习因式分解的基本概念和步骤。
2.复习因式分解的基本方法和技巧。
3.练习因式分解的实际应用题。
三、教学过程:1.复习因式分解的基本概念和步骤:(1)因式分解的基本概念:因式分解是将一个多项式写成几个简单的因式相乘的形式。
(2)因式分解的步骤:①找出最大公因式;②利用分配律进行因式的提取。
2.复习因式分解的基本方法和技巧:(1)提取公因式法:对于多项式中的每一项,找出它们的最大公因式,将公因式提取出来,然后将剩余部分写在括号内。
(2)公式法:在使用公式法进行因式分解时,首先要确定要分解的多项式是否符合公式的形式。
常见的因式分解公式有:①二次平方差公式:$a^2-b^2=(a+b)(a-b)$;② 二次平方和公式:$a^2 + 2ab + b^2 = (a+b)^2$;③ 二次立方和公式:$a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$。
3.练习因式分解的实际应用题:(1)例题一:将多项式$3x^3-6x^2-3x$进行因式分解。
解析:首先找出最大公因式,发现$3x$是每一项的公因式,因此将其提取出来,有$3x(x^2-2x-1)$。
(2)例题二:将多项式 $4x^2y + 12xy^2 - 8xy$ 进行因式分解。
解析:首先找出最大公因式,发现 $4xy$ 是每一项的公因式,因此将其提取出来,有 $4xy(x + 3y - 2)$。
四、教学小结:通过本次复习,我们回顾了因式分解的基本概念、步骤、方法和技巧。
因式分解是数学中的重要内容,我们要善于运用所学的知识解决实际问题。
希望同学们能够加强练习,提高因式分解的能力。
课题:因式分解 复习案复习目标:1.牢固理解因式分解的概念并能辨别;2.熟练掌握因式分解的几种常用方法;3.灵活运用因式分解的解题思维顺序;4.基本了解因式分解的实际运用情景。
教学过程:一、学习回顾:本章知识归纳:一、定义 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解。
(反复强调化成乘积的形式,而且要进行到每个因式都不能再分解为止)二、常用的方法 (1)提公因式法 注意点:①公因式要提尽,先系数(最大公约数),再字母(指数最低次数) ②多项式的第一项系数为负数时,把“—”作为公式写在括号外,使第一项系数为正。
(2)运用公式法(平方差、完全平方公式)(3)十字相乘(4)分组分解法:把各项适当分组,使分组分解能分组进行 分组时要用到添括号:括号前面是“+”,括号里面各项都不变号;括号前面是“—”,括号里面各项都变号。
三、步骤 应先提公因式,注意要提尽,再应用公式。
如果多项式为二项式考虑用平方差;如果是三项式可以考虑用完全平方公式,如果不能用完全平方公式,考虑能否用十字相乘;如果是四项及以上的,可以先考虑分组,再分解。
二、学习过程:1.因式分解:把一个多项式化成几个整式积的形式叫因式分解(或分解因式). 下列从左到右的变形属于因式分解的是( )A. xy x y x x 62)3(22-=-B. 4)4(442++=++x x x xC. )2)(3()2)(3(--=--m m m mD.)2)(2(422y x y x y x -+=-2.常用方法: 提公因式法:=++mc mb ma .确定公因式:1)取系数的公约数 ;2)取相同字母(或整体)的最低指数幂。
A.abc ab 422+= ;B.32323m n n m --= ;C. )(6)(22y x m y x m +++= .公式法---平方差公式 =-22b a 。
1.42-a = ; 2.216x -= ;3.221b a -= ;4.229)(m y x -+= 。
中考复习教案《因式分解》一、教学目标1. 知识与技能:(1)掌握因式分解的基本概念和方法;(2)能够运用提公因式法、公式法、分组分解法等方法进行因式分解;(3)能够解决与因式分解相关的实际问题。
2. 过程与方法:(1)通过复习和练习,巩固已学的因式分解方法;(2)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和自信心;(2)培养学生的团队合作意识和克服困难的意志。
二、教学内容1. 回顾因式分解的基本概念和方法;2. 复习提公因式法、公式法、分组分解法等因式分解方法;3. 分析常见的因式分解题型及解题策略;4. 解决与因式分解相关的实际问题。
三、教学重点与难点1. 教学重点:(1)因式分解的基本概念和方法;(2)提公因式法、公式法、分组分解法的运用;(3)解决实际问题中的因式分解。
2. 教学难点:(1)复杂的因式分解题目;(2)灵活运用各种因式分解方法;(3)解决实际问题中的因式分解。
四、教学过程1. 导入:(1)回顾因式分解的基本概念和方法;(2)引发学生对因式分解的兴趣和思考。
2. 讲解与示范:(1)讲解提公因式法、公式法、分组分解法等因式分解方法;(2)示例讲解常见的因式分解题型及解题策略;(3)引导学生进行思考和讨论。
3. 练习与巩固:(1)布置针对性的练习题,让学生独立完成;(2)引导学生总结解题规律和方法;(3)进行分组讨论和交流,共同解决问题。
4. 拓展与应用:(1)引导学生解决与因式分解相关的实际问题;(2)让学生运用因式分解解决实际问题,培养学生的应用能力。
五、课后作业1. 完成课后练习题,巩固所学内容;2. 选择一道复杂的因式分解题目进行挑战;3. 尝试解决一个与因式分解相关的实际问题。
教学反思:本节课通过复习和练习,帮助学生巩固了因式分解的基本概念和方法,提高了学生的解题能力。
在教学过程中,注重引导学生思考和讨论,培养学生的逻辑思维能力和解决问题的能力。
整式和因式分解复习教案第一章:整式的概念与性质1.1 内容概述本节主要回顾整式的定义、分类及其基本性质。
1.2 教学目标(1) 理解整式的概念,掌握整式的分类;(2) 掌握整式的加减法、乘法运算规则;(3) 理解整式的系数、次数、度等基本性质。
1.3 教学重点与难点重点:整式的概念、分类、基本性质;难点:整式的运算规则及性质的灵活运用。
1.4 教学方法采用讲授法、例题解析法、小组讨论法等。
1.5 教学过程(1) 复习整式的定义及分类;(2) 复习整式的加减法、乘法运算规则;(3) 复习整式的系数、次数、度等基本性质;(4) 进行典型例题讲解与分析;(5) 学生练习,教师点评。
第二章:因式分解的概念与方法2.1 内容概述本节主要回顾因式分解的定义、方法及其应用。
(1) 理解因式分解的概念,掌握因式分解的方法;(2) 学会运用因式分解解决实际问题。
2.3 教学重点与难点重点:因式分解的概念、方法;难点:因式分解在实际问题中的应用。
2.4 教学方法采用讲授法、例题解析法、小组讨论法等。
2.5 教学过程(1) 复习因式分解的定义及方法;(2) 复习因式分解在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第三章:提公因式法与公式法3.1 内容概述本节主要回顾提公因式法与公式法在因式分解中的应用。
3.2 教学目标(1) 掌握提公因式法与公式法的运用;(2) 学会运用提公因式法与公式法解决实际问题。
3.3 教学重点与难点重点:提公因式法与公式法的运用;难点:提公因式法与公式法在实际问题中的应用。
采用讲授法、例题解析法、小组讨论法等。
3.5 教学过程(1) 复习提公因式法与公式法的定义及运用;(2) 复习提公因式法与公式法在实际问题中的应用;(3) 进行典型例题讲解与分析;(4) 学生练习,教师点评。
第四章:因式分解的应用4.1 内容概述本节主要回顾因式分解在实际问题中的应用。
4.2 教学目标(1) 学会运用因式分解解决实际问题;(2) 培养学生的数学应用能力。
因式分解复习教学设计第一篇:因式分解复习教学设计《因式分解复习》教学设计抚顺市第二十六中学柴春杨因式分解是代数式的一种重要恒等变形,它是学习分式的基础,又在代数式的运算、解方程和函数中有广泛的应用。
本课是在学完因式分解新课后安排的一节复习课,因为之前一部分学生基础较差,整式的四则运算基础不过关,搞不清因式分解与多项式的逆变形,混淆公式,分解不彻底等。
教学目标:1.能理解因式分解的概念并能正确判别,培养学生运用数学知识解决实际问题的意识,掌握因式分解的方法及一般步骤。
2.学会逆向思维,渗透化归的思想方法.通过“彻底分解”养成细心观察、缜密思考、综合分析的能力。
3.通过因式分解的学习,使学生体会数学美,根据自己解决问题的过程,让学生获得成功的体验,培养团队合作交流意识。
教学重点:熟练运用两种方法来进行因式分解。
教学难点:因式分解两种方法的综合运用。
教学过程:一.课前展示:(教师寄语:温故而知新,复习后再做题!)下列代数式的变形当中哪些是因式分解,哪些不是.A.6x2y=3xy·2xB.a2-b2+1=(a+b)(a-b)+1C.-m2-mn=-m(m+n)D.(x+3)(x -3)= x2-91E.a+1=a(1+)a设计意图:(1)弄清因式分解的对象和结果。
(2)因式分解与整式乘法是相反方向的变形.(3)因式分解是恒等变形,因此可以用整式乘法来检验.解题密码:因式分解是把一个________化成几个__________的形式二.激趣导入:司马光砸缸:当小孩掉入缸里时,其他小朋友想的是如何捞人,而司马光想的却是砸缸,使水流出,这种逆向思维的方法在我们数学中也经常用到:比如因式分解和整式的乘法。
设计意图:使学生联系生活实际,在轻松愉悦的氛围中学习并知道了因式分解和整式的乘法的这种互逆关系。
三.探究新知1.提公因式法因式分解:公因式的概念和找公因式的方法多项式中各项都含有的相同因式,称之为公因式.温馨提示:一看系数,找_______________ 二看字母,找________________ 三看指数,找________________(教师寄语:勤思考,善动脑,天天会进步!)展示汇报:先找出下列各多项式中的公因式,(再用提公因式法分解因式):(1)8x+64(2)12m2n3-3n2m3(3)p(a2+b2)-q(a2+b2)(4)2a(y-z)-3b(z-y)(5)-24x3-12x2 +28x(6)4p(1-q)3+2(q-1)2设计意图:设置问题串,分散难点,小组合作,交流解题思路,带动学困生,小组之间矫正互批。
因式分解教案四篇因式分解教案篇1课型复习课教法讲练结合教学目标(学问、力量、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步进展同学观看、归纳、类比、概括等力量,进展有条理的思索及语言表达力量教学重点把握用提取公因式法、公式法分解因式教学难点依据题目的形式和特征恰当选择方法进行分解,以提高综合解题力量。
教学媒体学案教学过程一:【课前预习】(一):【学问梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ;完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,假如有公因式,肯定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保存中括号形式,还能连续分解等(二):【课前练习】1.以下各组多项式中没有公因式的是( )A.3x-2与 6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与 nynxD.aba c与 abbc2. 以下各题中,分解因式错误的选项是( )3. 列多项式能用平方差公式分解因式的是()4. 分解因式:x2+2xy+y2-4 =_____5. 分解因式:(1) ;(2) ;(3) ;(4) ;(5)以上三题用了公式二:【经典考题剖析】1. 分解因式:(1) ;(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
因式分解复习课教案
12.13 因式分解复习课教案
教学目标:
1. 进一步掌握因式分解的概念,熟练运用4种方法进行因式分解。
2. 通过辨析纠错和综合运用,提高学生分析,归纳,反思能力以及综合运用能力。
3. 通过小组合作,进一步培养学生的合作能力,增加自信。
教学重点:正确合理运用4种方法进行因式分解。
教学难点:体会整体思想,化归思想。
教学过程:
一.课前梳理,知识回顾
1) 下列从左到右的变形,属于因式分解的是()
A. ab a b a a -=-2)(
B. 1)2(122+-=+-a a a a
C. )1)(3(322+-=--x x x x
D. )1(12x
x x x +=+ 2)我们学过的因式分解的方法有哪些?口答
二.任务引导,知识重构
阅读下列解题过程,找出其中的错误,用红笔圈出来,并进行改正。
1)分解因式:22369y x +- 改正:
解:)369(22y x --=原式
= )63)(63(y x y x -+-
错误:____________________________
2)分解因式:)()(42x y x y x x -+- 改正:
解:原式=)()(42y x x y x x -+-
=])(4)[(x y x x y x +--
=)44)((2x xy x y x +--
错误:_____________________________
3)分解因式:122
4+-a a 改正:
解:原式=22)1(-a
=[2)1(-a ]2
=4)1(-a
错误:______________________________
4) 分解因式: 3)(4)(2
++-+b a b a 改正:
解:原式=)3)(1(++++b a b a
错误:______________________________
5) 分解因式: 22414y xy x +-- 改正:
解:原式=)41()4(2y y x x ---
=)21)(21()4(y y y x x -+--
错误:______________________________
总结:因式分解的一般步骤:
1)一“提”:如果多项式的各项有公因式,那么先提公因式;
2)二“套”:如果各项没有公因式,那么可尝试运用公式,十字相乘法,分组分解来分解;
3)三“查”:因式分解是否分解彻底,书写是否规范。
三.综合运用,巩固提高
1. 分解因式 m mx mx mx +--23
2. 分解因式 48)5(32+--x
3. 分解因式 3)2(2)2(222-+-+a a a a
4. 分解因式 25)105)(5(2
2++++a a a a
5. 分解因式 1)65)(45(22+++++a a a a
6. 分解因式1)4)(3)(2)(1(+++++a a a a
四.课堂小结,反思质疑
1)因式分解的概念和方法
2)因式分解的一般步骤
3)整体和化归的数学思想
五.布置作业
六.拓展阅读
1. 分解因式:34561202
+-x x
分析:由于常数项数值比较大,则采用x x 1202-变为差的平方的形式进行分解,这样简便易行。
)
72)(48()
1260)(1260(144
)60(3456
60606023456
12022222--=--+-=--=+-+??-=+-x x x x x x x x x 请按照上面的方法分解因式:22751002++x x
2. 在多项式(________)22
2+++y xy x 中填上一个单项式,使这个多项式能进行因式分解,并将它分解因式。