单项式乘以多项式教学设计
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
单项式乘多项式【教学目标】1.知道单项式乘多项式法则,能正确运算。
2.让学生感受到通过数的计算,可以解决一些实际问题。
【教学重难点】重点:单项式乘多项式法则。
难点:根据单项式乘多项式法则,解决一些实际问题。
【教学过程】一、复习提问1.单项式乘单项式法则;2.运用时应注意什么?二、新课讲解1.情景创设上节课我们学习了单项式乘单项式,请同学们结合上节课的知识,思考这样一个问题:计算下图的面积,并把你的算法与同学交流。
派代表回答后,教师点评:如果把图中看成一个大长方形,它的长为b+c+d,宽为a,那么它的面积为a(b+c+d)。
如果把上图看成是由3个小长方形组成的,那么它的面积为ab+ac+ad.由此得到:a(b+c+d)=ab+ac+ad.好,我们再一起来看这个等式,等式的左边是一个单项式乘多项式,右边是若干个单项式的和组成的。
同学们是不是觉得它很眼熟呀?其实呀,对于任意的a,b,c,d,由乘法分配律同样可以得到a(b+c+d)= ab+ac+ad.那么,既然我们得到了这个等式,同学们能不能用语言将它叙述出来呢?请学生回答:单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的积相加。
书本做一做:请学生完成在书本上。
2.例题讲解例1:计算:(1)23)(43)x x -⋅-( (2)231(3)43ab ab ab -⋅ (3)(-2a)·(2a 2-3a+1)解:(1)原式=22(3)(4)(3)(4)x x x x -⋅+-⋅=32129x x -+(2)原式=2311(3)433ab ab ab ab ⋅+-⋅ =232214a b a b - (3)原式=(-2a)·2a 2+(-2a)·(-3a)+(-2a)·1=-4a 3+6a 2-2a练习计算:(请学生板演)(1)(-4x)·(2x²+3x-1);(2)(ab 2-2ab)·ab(3)-2a 2·(ab+b 2)-5a(a 2b-ab 2)例2:如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积。
可编辑修改精选全文完整版第八章整式乘法与因式分解8.2.2 单项式与多项式相乘第1课时单项式乘以多项式一、教学目标1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.二、教学重点及难点重点:认识单项式与多项式相乘的法则难点:掌握单项式与多项式相乘的法则并会运用三、教学用具多媒体课件.四、相关资源图片五、教学过程【课堂导入】教师提出问题:计算:(-1)×(4-1)时.我们可以根据有理数乘法的分配律进行计算,那么怎样计算x·(x2-x)呢?提示:根据乘法分配律,乘以它的每一项.解:x·(x2-x)=x3−x2设计意图:创设情境,通过学生熟知的有理数乘法的分配律进行导入,介绍单项式乘以多项式的运算法则.【新知讲解】1.单项式与多项式相乘的运算法则教师展示ppt上习题:2(x+y2z+xy2z3)·xyz;解:原式=(2x+2y2z+2xy2z3)·xyz=2x2yz+2xy3z2+2x2y3z4.总结规律:1.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2. 单项式与多项式相乘的运算实质上是转化为单项式乘单项式设计意图:通过做题,带领学生认识单项式乘以多项式,先去括号,然后计算乘法,再合并同类项即可.2.单项式与多项式乘法的实际应用.教师讲解习题:一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.总结规律:通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解题的关键.设计意图:通过习题,使学生掌握单项式与多项式乘法的实际应用3.利用单项式乘以多项式化简求值.方法总结:在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项设计意图:通过习题,学会整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项..【典型例题】例1 计算下列各式:(1)3x (2x -y 2)=____________.(2)(2x -5y +6z )(-3x )=________________.(3)(-2a 2)2(-a -2b +c )=_________________.解:(1)6x 2-3xy 2(2)-6x2+15xy-18xz(3)-4a5-8a4b+4a4c设计意图:掌握单项式乘以多项式的计算.例2先化简,再求值:5a(2a2-5a+3)-2a2(5a+5)+7a2,其中a=2.解:5a(2a2-5a+3)-2a2(5a+5)+7a2=10a3-25a2+15a-10a3-10a2+7a2=-28a2+15a,当a=2时,原式=-82.设计意图:通过练习,巩固化简规律.【随堂练习】1.计算:(-4x)·(2x2+3x-1);解:原式=(-4x)·(2x2)+(-4x)·3x+(-4x)·(-1)=-8x3-12x2+4x;2.计算:-2x2·(xy+y2)-5x(x2y-xy2).解:原式=( -2x2) ·xy+(-2x2) ·y2+(-5x) ·x2y+(-5x) ·(-xy2)=-2x3y+(-2x2y2)+(-5x3y)+5x2y2=-7x3y+3x2y2.3.先化简,再求值3a(2a2-4a+3)-2a2(3a+4),其中a=-2.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×(-2)2+9×(-2)=-98.4.如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.解:4a[(3a+2b)+(2a-b)]=4a(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.设计意图:通过学生的练习,使教师及时了解学生对知识的理解情况,以便教师及时对学生进行矫正.【课堂小结】1.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘的运算实质上是转化为单项式乘单项式3.注意:(1)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负(2)不要出现漏乘现象(3)运算要有顺序:先乘方,再乘除,最后加减(4)对于混合运算,注意最后应合并同类项设计意图:通过小结,回顾本节课所学新知,加深印象.【板书设计】第1课时单项式乘以多项式1.单项式与多项式相乘的运算法则2.单项式与多项式乘法的实际应用3.利用单项式乘以多项式化简求值。
《单项式与多项式相乘》教案第一章:单项式与多项式的概念回顾1.1 回顾单项式的定义:一个数或字母的乘积称为单项式,如2x, 3y^2等。
1.2 回顾多项式的定义:由多个单项式通过加减运算组成的表达式,如ax^2 + bx + c等。
第二章:单项式与多项式的相乘规则2.1 介绍单项式与多项式相乘的规则:将单项式分别与多项式中的每一项相乘,将结果相加。
2.2 示例:假设要计算单项式3x与多项式2x^2 + 4x + 1相乘,则将3x分别与2x^2, 4x, 1相乘,将结果相加。
第三章:单项式与多项式相乘的计算步骤3.1 步骤1:将单项式与多项式中的每一项相乘。
3.2 步骤2:将乘积相加。
3.3 步骤3:简化结果,合并同类项。
3.4 示例:计算单项式-2x与多项式3x^2 + 5x 2相乘,按照步骤1、步骤2、步骤3进行计算。
第四章:单项式与多项式相乘的练习题4.1 设计一些练习题,让学生独立完成,加深对单项式与多项式相乘的理解。
4.2 练习题可以包括不同类型的单项式和多项式,以及不同难度的问题。
第五章:单项式与多项式相乘的应用题5.1 设计一些应用题,让学生将所学知识应用于实际问题中。
5.2 应用题可以涉及不同领域的实际问题,如面积、体积计算等。
第六章:单项式与多项式相乘的拓展概念6.1 介绍单项式与多项式相乘的拓展概念,如分配律的应用。
6.2 解释分配律:单项式乘以多项式中的每一项,将结果相加。
6.3 示例:使用分配律计算单项式4x与多项式(2x + 3)相乘。
第七章:单项式与多项式相乘的技巧与策略7.1 提供一些技巧与策略,帮助学生更高效地解决单项式与多项式相乘的问题。
7.2 技巧1:先乘除后加减,按照运算顺序进行计算。
7.3 技巧2:先简化多项式,再进行相乘。
7.4 示例:运用技巧解决复杂的单项式与多项式相乘问题。
第八章:单项式与多项式相乘的错误分析8.1 分析学生在单项式与多项式相乘中常见的错误。
单项式乘多项式教案教学目标:通过本节课的学习,学生能够掌握单项式乘多项式的方法和技巧。
一、导入新知识1. 回顾单项式和多项式的概念,并让学生复习如何将单项式相乘。
2. 提问:单项式乘多项式的运算规则是什么?二、讲解单项式乘多项式的方法与步骤1. 将单项式的每一项与多项式依次相乘。
示范:(2x^2)(3x^3 + 4x^2 - 5x)= 2x^2 * 3x^3 + 2x^2 * 4x^2 - 2x^2 * 5x= 6x^5 + 8x^4 - 10x^32. 注意系数相乘、指数相加的法则,保持乘法结果的整齐。
示范:(3a^2)(2a^3b^2 - ab^3 + 5a^2b)= 3a^2 * 2a^3b^2 - 3a^2 * ab^3 + 3a^2 * 5a^2b= 6a^5b^2 - 3a^3b^3 + 15a^4b三、练习1. 让学生完成练习册上的相关习题,巩固所学知识。
2. 给学生布置一道课后作业题目,以检验其掌握程度。
例如:计算 (2x^2)(3x^3 - 4x^2 + 5x) 的结果。
四、总结1. 让学生回顾本节课学习的内容,进一步巩固所学知识。
2. 提问:单项式乘多项式的结果是什么?答案是多项式。
五、课堂小结本节课主要学习了如何进行单项式乘多项式的运算。
首先将单项式的每一项与多项式的所有项相乘,然后按照指数和系数的法则进行合并。
通过练习巩固了所学知识。
六、课后作业计算以下式子的结果:1. (3x^2)(4x^3 - 2x + 5)2. (2a^2)(3a^3b^2 - ab^3 + 5a^2b)3. (5xy)(2x + 3y - 4xy)延伸活动可以让学生设计一个练习题,要求同学们相互进行单项式乘多项式的运算,并互相检查答案是否正确。
33单项式与多项式相乘教案一、教学目标知识与技能:1. 学生能够理解单项式与多项式的概念。
2. 学生能够掌握单项式与多项式相乘的法则。
3. 学生能够运用单项式与多项式相乘的法则解决实际问题。
过程与方法:1. 学生通过观察、分析、归纳单项式与多项式相乘的法则。
2. 学生通过练习题目的形式,提高自己的运算能力和解决问题的能力。
情感态度价值观:1. 学生培养对数学的兴趣,感受数学的实用性。
2. 学生在解决问题的过程中,培养自己的耐心和自信心。
二、教学重点与难点重点:1. 单项式与多项式相乘的法则。
2. 运用单项式与多项式相乘的法则解决实际问题。
难点:1. 理解并掌握单项式与多项式相乘的法则。
2. 在实际问题中,正确运用单项式与多项式相乘的法则。
三、教学准备教师准备:1. 教学PPT。
2. 练习题目。
学生准备:1. 笔记本。
2. 尺子、圆规等绘图工具。
四、教学过程1. 导入:教师通过引入生活中的实际问题,引导学生思考单项式与多项式的关系,激发学生的学习兴趣。
2. 新课讲解:教师通过PPT展示单项式与多项式的定义,讲解单项式与多项式相乘的法则,引导学生观察、分析、归纳。
3. 案例分析:教师给出具体的单项式与多项式相乘的案例,引导学生运用所学知识解决问题。
4. 练习巩固:教师给出一些练习题目,让学生独立完成,检验学生对知识的掌握程度。
5. 课堂小结:教师对本节课的主要内容进行总结,强调单项式与多项式相乘的法则及实际应用。
五、课后作业教师布置一些有关单项式与多项式相乘的练习题目,让学生巩固所学知识,提高运算能力和解决问题的能力。
六、教学评价教师通过课堂表现、练习完成情况、课后作业等多方面评价学生对单项式与多项式相乘知识的理解和掌握程度。
关注学生在解决问题时的思维过程和方法,培养学生的数学思维能力。
七、教学反思教师在课后对自己的教学进行反思,分析教学过程中的优点和不足,针对不足之处进行改进,以提高今后的教学效果。
单项式乘多项式教案一、教学目标1. 让学生掌握单项式乘多项式的运算方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学内容1. 单项式乘多项式的概念。
2. 单项式乘多项式的运算规则。
3. 单项式乘多项式的实例讲解。
三、教学重点与难点1. 单项式乘多项式的运算规则。
2. 运用单项式乘多项式解决实际问题。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解单项式乘多项式的运算方法。
2. 采用例题解析法,让学生通过分析、解答实例,掌握单项式乘多项式的运算技巧。
3. 采用小组讨论法,让学生合作探究,提高解决问题的能力。
五、教学准备1. 教案、PPT、黑板。
2. 练习题、答案。
3. 教学视频或图片素材。
第一节:单项式乘多项式的概念一、导入新课1. 复习单项式和多项式的概念。
2. 提问:单项式和多项式相乘会得到什么类型的式子呢?二、新课讲解1. 引入单项式乘多项式的概念。
2. 讲解单项式乘多项式的运算规则。
三、实例讲解1. 展示实例,让学生观察、思考。
2. 讲解实例,让学生理解单项式乘多项式的运算过程。
四、课堂练习1. 布置练习题,让学生独立完成。
2. 讲解答案,让学生巩固所学知识。
第二节:单项式乘多项式的运算规则一、导入新课1. 复习上节课的内容。
2. 提问:单项式乘多项式的运算规则是什么?二、新课讲解1. 讲解单项式乘多项式的运算规则。
2. 强调运算规则的应用。
三、实例讲解1. 展示实例,让学生观察、思考。
2. 讲解实例,让学生理解单项式乘多项式的运算过程。
1. 布置练习题,让学生独立完成。
2. 讲解答案,让学生巩固所学知识。
后续章节待补充。
六、教学拓展与应用一、导入新课1. 复习前几节课的内容。
2. 提问:我们已经掌握了单项式乘多项式的运算,如何将其应用于实际问题中呢?二、新课讲解1. 讲解如何运用单项式乘多项式解决实际问题。
2. 强调在实际问题中,单项式乘多项式的运用技巧。
教学设计模板(1)(2)题,引入新课通过乘法分配律将单项式乘多项式转化为单项式乘单项式,所以引导学生回顾单项式乘单项式的法则,通过两道计算题,让学生回顾乘法分配律。
二、导入新课如图,试求出三块草坪的总面积是多少?、如果如果把它看成三个小长方形,那么它们的面积可分别表示为_____、_____、_____,总面积为___________.出示问题,引导学生先独立思考,再小组讨论。
学生先独立完成,再交流通过小组交流,学生可以发现此问题的解决可以有不同的途径;通过小组交流,学生自然会去探究两种表示方法的关系,通过教师适时提这一环节,从实际问题出发,为学生创设了思考和探究的空间。
由于课本提供的问题情节与上节课相类似,不易pa pb pc pc pb pa ++)(1253124-⨯)(36659221-⨯⎪⎭⎫⎝⎛-+-如果把三个小长方形拼成一个大长方形,那么它们总面积可以表示为___________.根据乘法的分配律出问题,引导学生发现两种不同的运算一方面是单项式与多项式相乘,另一方面是包含单项式与单项式乘法,再把所得的积相加。
两者最终是统一的,从而发现单项式乘多项式的规律。
激发学生兴趣,因此选取了另外一个同样是学生身边的实际问题。
一方面学生能够直接用长宽表示图形的面积,另一方面可以用三个图形的面积和表示面积。
这样不同的结果引发学生的讨论,最终发现二者是相等的,从而得到本节课的关键等式()c b a p++()pcpbpap++=++cba()pcpbpap++=++cba。
《单项式与多项式相乘》教案一、教学目标知识与技能:1. 学生能理解单项式与多项式相乘的概念。
2. 学生能够运用分配律正确地进行单项式与多项式的乘法运算。
过程与方法:1. 学生通过观察、分析、归纳,掌握单项式与多项式相乘的法则。
2. 学生通过小组合作、讨论,提高解决问题的能力。
情感态度与价值观:1. 学生培养对数学的兴趣,树立自信心。
2. 学生学会运用数学知识解决实际问题,培养应用意识。
二、教学重点与难点重点:1. 单项式与多项式相乘的概念。
2. 单项式与多项式相乘的法则。
难点:1. 理解并运用分配律进行单项式与多项式的乘法运算。
三、教学方法情境教学法、启发式教学法、小组合作学习法。
四、教学准备PPT、黑板、粉笔、练习题。
五、教学过程1. 导入新课教师通过PPT展示生活中的实例,引导学生思考如何计算单项式与多项式的乘法。
2. 探究新知(1)教师引导学生观察、分析实例,引导学生发现单项式与多项式相乘的规律。
(2)教师引导学生运用分配律,进行单项式与多项式的乘法运算。
(3)教师通过讲解,让学生理解并掌握单项式与多项式相乘的法则。
3. 巩固练习教师布置练习题,学生独立完成,集体讲解答案。
4. 课堂小结教师引导学生总结本节课所学内容,巩固单项式与多项式相乘的法则。
5. 课后作业教师布置课后作业,让学生进一步巩固所学知识。
六、教学策略1. 实例引入:通过生活中的实际例子,激发学生的学习兴趣,引导学生思考单项式与多项式相乘的问题。
2. 启发式教学:教师引导学生观察、分析、归纳,培养学生的逻辑思维能力。
3. 小组合作学习:鼓励学生之间互相讨论、交流,提高学生的问题解决能力。
4. 适时反馈:教师应及时关注学生的学习情况,对学生的疑问进行解答,确保学生掌握所学知识。
七、教学内容1. 单项式与多项式相乘的概念。
2. 单项式与多项式相乘的法则。
3. 运用分配律进行单项式与多项式的乘法运算。
八、教学步骤1. 导入新课:通过实例引入,引导学生思考单项式与多项式相乘的问题。
单项式乘以多项式
阳丰镇中赵新民
教学目标1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.
2. 使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.
3. 逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.
重点单项式与多项式相乘的法则及其运用.
难点单项式与多项式相乘去括号法则的应用.
教学过程(师生活动)
复习引新一知识回顾:
1. 回忆幂的运算性质:
a m〃a n=a m+n(m,n都是正整数) 底数幂相乘,底数不变,指数相加.
(a m)n=a mn(m,n都是正整数) 幂的乘方,底数不变,指数相乘.
(ab)n=a n b n(n为正整数) 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
3.练一练:判断正误(如果不对应如何改正?)
(1)4a2〃2a3=8a6()
(2)(ab)2(ab3)=a3b5()
(3)(-2x2)3xy2=8x7y2()
点拨:(1)错误,应该为8a5 (2)正确(3)错误,应该为-8x7y2
创设情境引入新课
问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?
探究新知1.让学生分析题意,得出两种解法:
解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:
m(a+b+c) ①
解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:
ma+mb+mc ②
请学生探究①和②是否表示的结果一致?由于①和②表示同一个量,所以:
m(a+b+c)=ma+mb+mc 。
得出结论后再由乘法分配律公式(a+b)c=ac+bc从另一个角度推出结论m(a+b+c)=ma+mb+mc
想一想:你能由此总结出单项式与多项式相乘的乘法法则吗?
教师总结如下:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
2.例题分析:
(1)(-4x2)(3x+1) (2)(
3
2
ab2-2ab)
2
1
ab(在学习过程中重点提醒学生注意符号问题,多项式的每一项都包括它前面的符号)
深入探究一、根据例题分析,启发学生总结单项式与多项式相乘的实质和一般步骤:
1、单项式与多项式相乘的实质是利用分配律把单项式乘以多项式转化为单项式乘法
2.单项式与多项式相乘时,分三个阶段:
①按分配律把乘积写成单项式与单项式乘积的代数和的形式;
②按照单项式的乘法法则运算。
③再把所得的积相加.
二、强调计算时的注意事项:
1. 计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负。
2.不要出现漏乘现象。
3.运算要有顺序:先乘方,再乘除,最后加减。
4.对于混合运算,注意最后应合并同类项。
课内巩固练一练:课本27页练习1.2
给学生足够的时间进行基础练习,安排2-3个同学在黑板上演示解题过程,及时观察学生知识的掌握状况,及时纠错以便加深印象,使学生深刻理解单项式与多项式相乘的解题思路及基本方法。
(注:学生在计算过程中,容易出现符号问题,要特别提醒学生注意.)
课外研究试一试:通过以下三道题目加深对单项式与多项式相乘的理解,能够灵活的应用计算方法解出除了例题这样常规题型以外的几类经典题型,拓宽学习思路。
1.判断题:
(1)单项式乘以单项式,结果一定是单项式()
(2)两个单项式相乘,积的次数是两个单项式次数的积()
(3)单项式与多项式相乘的结果一定是一个多项式,其项数与因式中多项式的项数相同()
辨析:(1)正确
(2)错误,积的次数是两个单项式次数的和(可举简单的例子进行说明)(3)错误应说明在合并同类项前,项数的情况与合并同类项后的情况可能有所不同。
2.解不等式:2x(x+1)-(3x-2)x+2x2〉x2-1 解集x〉-
4
1
启发学生看清题目本质,此题型解不等式的前提是计算单项式乘多项式。
3.已知ab2=3,求ab(a2b5-ab3-b)的值结果:15
注:要求学生能够灵活运用幂的乘方等基本公式。
小节再次总结单项式与多项式相乘的法则以及运算时需注意的几点问题。
设计思想
单项式的乘法用到了有理数的乘法、幂的运算性质,而后续的多项式与多项式的乘法,都要转化为单项式乘法.因此,单项式乘法将起到承前启后的作用,在整式乘法中占有独特地位.所以在教学中先对所学知识进行回顾,再从实际问题导入,让学生自己动手试一试,主动探索;在教学过程中引导学生参照引例解决方法,教师先不给出单项式与多项式相乘的运算法则,而是让学生先独立思考,然后由学生自己小结出如何进行单项式与多项式相乘的乘法,在探索新知的过程中让学生体会从特殊到一般,从具体到抽象的认识过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得单项式与单项式相乘的运算法则,从而构建新的知识体系.在此基础上要求学生用语言叙述这个性质,这有利于提高学生数学语言的表述能力.因为整式是在数的运算的基础上发展起来的,所以在学习单项式与多项式的乘法时,让学生类比数的运算律,将单项式乘以多项式转化为单项式的乘法,将新知识转化为已经学过的知识.无论是单项式乘以单项式还是单项式乘以多项式“转化”为单项式的乘法,学生都从中体会到学习新知识的方法,即学习一种新的知识、方法;通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行。