国外CVD法制备石墨烯的创新研究
- 格式:pdf
- 大小:781.56 KB
- 文档页数:4
cvd石墨烯的制备与转移-回复如何制备和转移cvd石墨烯。
第一步:制备cvd石墨烯的原料要制备cvd石墨烯,首先需要准备一些原料和设备。
以下是制备cvd石墨烯所需的材料和设备:1. 金属基底:常用的金属基底有铜、镍和钯等。
金属基底需要具有良好的热传导性和机械稳定性。
在制备cvd石墨烯时,金属基底扮演着催化剂的角色,帮助在基底上生长石墨烯晶格。
2. 石墨烯前体材料:常用的石墨烯前体材料有甲烷和乙烯等。
这些化学物质经过热解后可以产生碳原子并沉积在金属基底上,形成石墨烯晶格。
3. 反应室:反应室是用于进行化学气相沉积(chemical vapor deposition, CVD)的设备。
反应室内需要保持高温和低压条件,并通过控制气体流量来调节石墨烯的生长速率和质量。
第二步:cvd石墨烯的制备过程一般来说,将金属基底放置在反应室中,加热到适当的温度(通常是1000-1200摄氏度)。
然后,在反应室中引入石墨烯前体材料和载气(一般为氩气或氢气),并保持适当的压力和流量。
石墨烯前体材料会在金属基底表面热解,产生碳原子,并随后沉积在金属基底上,形成石墨烯晶格。
这个过程中的关键是控制反应室内的温度、压力和气体流量。
适当的参数设置可以保障石墨烯的生长质量和速率。
此外,选择合适的石墨烯前体材料和金属基底也会影响石墨烯的质量。
第三步:转移cvd石墨烯cvd石墨烯通常是在金属基底上生长的,但通常并不需要将石墨烯保留在金属上。
因此,转移石墨烯是制备好的石墨烯材料的下一步。
以下是一种常用的方法用于cvd石墨烯的转移:1. 清洗金属基底:在将石墨烯转移到其他基底之前,需要先清洗金属基底。
可以使用溶剂(如乙醇)清洗去除表面的杂质。
2. 转移膜技术:转移膜技术是一种常用的方法,用于将石墨烯从金属基底上转移到其他基底上。
这种技术通常涉及到以下几个步骤:a. 将粘性材料施加在石墨烯和基底之间,形成一层粘合剂。
b. 轻轻将另一个基底压在粘合剂上,使其黏附在石墨烯上。
铜基(表面偏析)CVD法制备石墨烯------------912实验室铜箔:(购买自Alfa Aesar,厚度:0.025mm,纯度:99.8%,CAS:7440-50-8;)一.铜箔的前期处理第一步:铜片的裁剪与清洁1将铜片用石英管碾平,并裁剪成3*7cm大小,通常情况一长条铜片能裁成9小片左右;2将裁剪好的铜片放入培养皿,倒入适量丙酮,泡至少5min,再放入超声机超10s。
(此时一定要注意超声时间,过长会导致铜片上有破洞出现。
)随后将丙酮倒掉,用去离子水涮几遍,再在水中泡着即可;第二步:抛光液的配置和其他准备工作1超声清洗一个250ml的烧杯,将聚乙二醇和磷酸按1:3的比例依次倒入烧杯,配得容量为250ml的抛光液,再放入干净的搅拌子,用铝箔封口,放在磁力搅拌器上搅拌至少40min;2超声大小石墨片各一个,再用砂纸打磨两根电极线;第三步:抛光1将铜片贴在小石墨片上,用电极线将其和电化学工作站的阳极(红线)相连,用另一根电极线将大石墨片与电化学工作站的阴极(绿线)相连,连好后双双放入抛光液中,用夹子夹住线,固定好位置,大小石墨片要对齐,小石墨片要包含在大石墨片的范围内;2设备全部摆好之后,打开电脑和电化学工作站,打开chi660d.exe软件,依次点setup、electrochemical tech…、open circuit potertial-time、ok、运行,适当时间后停止。
再依次点击setup、electrochemical tech…、amperometric i-tcurve,设置第一项为-10,时间为1800s,最后一项为e*10-2,ok、运行。
时间到了之后将抛光好的放入去离子水中,换上下一片继续点击运行进行抛光;第四步:铜片抛光之后的清洁处理1铜片全部抛光好之后,先用去离子水涮几遍,在另一个培养皿里配置稀硫酸(装满水再滴10滴左右硫酸),将铜片全部放入稀硫酸溶液中泡5~10min;2再将铜片全部转移到干净的去离子水中,将铜片一片片地取出,分别用水和乙醇冲洗并吹干,剪掉头尾没有被抛光到的部分,再折角标记,放入盒中储存。
cvd石墨烯的制备与转移-回复石墨烯是由单层碳原子通过共价键连接而成的二维结构材料。
它具有极高的导电性、热导率和机械强度,且透明度很高,因此在能源、电子、光学等领域具有广泛的应用前景。
本文将详细介绍石墨烯的制备与转移的步骤。
1. 石墨烯的制备方法目前常用的石墨烯制备方法有机械剥离、化学气相沉积法、化学气液相沉积法和纳米碳颗粒还原法等。
其中,机械剥离法是一种简单易行的方法,可以通过机械手段将石墨材料剥离为单层石墨烯。
而化学气相沉积法和化学气液相沉积法则可以在大规模制备石墨烯。
2. 机械剥离法制备石墨烯机械剥离法是通过机械手段将石墨材料剥离为单层石墨烯。
首先,选取一段石墨材料,例如石墨矿石或石墨石。
然后,使用胶带将石墨材料粘贴在平滑的固体表面上。
再用另一块胶带迅速撕下,这样会将石墨材料剥离成较薄的层次,重复多次可以得到单层石墨烯。
3. 化学气相沉积法制备石墨烯化学气相沉积法是通过在高温环境下将气态碳源分解并沉积在基底上制备石墨烯。
首先,将金属基底(如铜、镍等)放入石墨炉中,在高温下预处理金属基底。
然后,在高温下加入适量的碳源气体(如甲烷、乙烯等),使其分解生成碳原子。
这些碳原子会在金属基底表面沉积并形成石墨烯。
4. 化学气液相沉积法制备石墨烯化学气液相沉积法是在有机溶剂中溶解石墨氧化物,并通过还原剂还原制备石墨烯。
首先,在有机溶剂中溶解石墨氧化物,形成石墨烯预体溶液。
然后,加入适量的还原剂,如乙醇、异丙醇等,使溶液中的石墨氧化物还原为石墨烯。
最后,通过过滤或离心等方法将石墨烯分离出来。
5. 石墨烯的转移方法在石墨烯制备完成后,需要将其从基底上转移到目标基底上。
常用的转移方法有胶带法、湿法转移法和干法转移法等。
胶带法是最简单的方法,将石墨烯暴露在基底上,再用胶带迅速撕下,将石墨烯剥离。
湿法转移法是在石墨烯和目标基底之间涂覆一层水溶性的胶体,如聚酯酯、聚甲基丙烯酸甲酯等,然后将水溶液极速蒸发,使石墨烯沉积在目标基底上。
石墨烯制备方法的研究进展一、本文概述石墨烯,一种由单层碳原子构成的二维纳米材料,自2004年被科学家首次成功制备以来,就因其独特的物理、化学和电子特性引起了全球范围内的广泛关注。
由于其出色的导电性、超高的热导率、优异的力学性能和潜在的大规模应用前景,石墨烯在众多领域如能源、电子、生物医学等都有着广泛的应用潜力。
然而,石墨烯的制备技术仍然是制约其大规模应用的关键因素之一。
因此,研究和开发高效、稳定、可规模化的石墨烯制备方法成为了当前科学研究的重要课题。
本文旨在全面综述石墨烯制备方法的研究进展,通过对各种制备方法的原理、特点、优缺点以及最新研究成果的详细分析和讨论,为石墨烯的大规模制备和应用提供理论支持和技术指导。
文章将首先介绍石墨烯的基本结构和性质,然后重点介绍目前主要的石墨烯制备方法,包括机械剥离法、化学气相沉积法、氧化还原法、碳化硅外延法等,并对各种方法的最新研究进展进行评述。
文章还将探讨石墨烯制备技术的发展趋势和未来研究方向,以期为石墨烯的进一步研究和应用提供有益的参考。
二、石墨烯制备方法概述石墨烯的制备方法众多,每一种方法都有其独特的优点和适用场景。
目前,主要的制备方法可以大致分为物理法和化学法两大类。
物理法主要包括机械剥离法、SiC外延生长法和取向附生法等。
机械剥离法是最早用来制备石墨烯的方法,其原理是通过使用胶带对石墨进行层层剥离,得到单层或多层的石墨烯。
这种方法制备的石墨烯质量较高,但产率极低,难以实现大规模生产。
SiC外延生长法是在高温和超真空环境下,通过加热SiC单晶使其表面分解出碳原子,进而在单晶表面生长出石墨烯。
这种方法制备的石墨烯面积大,质量好,但设备成本高昂,且制备过程复杂。
取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,使碳原子以单层形式从钌表面析出,形成悬浮的单层石墨烯。
这种方法制备的石墨烯层数可控,但同样面临制备成本较高的问题。
cvd石墨烯的制备与转移CVD石墨烯的制备与转移引言:石墨烯作为一种二维材料,具有优异的电学、热学和力学性能,在电子器件、传感器、催化剂等领域具有广泛的应用前景。
其中,化学气相沉积(CVD)是一种常用的制备方法,可以在金属衬底上快速高效地合成大面积的石墨烯薄膜。
本文将重点介绍CVD石墨烯的制备过程以及转移技术。
一、CVD石墨烯的制备过程1. 基本原理CVD石墨烯的制备是通过在高温环境下使碳源气体分解生成石墨烯,并在金属衬底表面沉积形成薄膜。
常用的碳源气体有甲烷、乙烯等。
在高温条件下,碳源气体分解生成碳原子,然后在金属表面进行扩散和聚合,最终形成石墨烯结构。
2. 制备步骤(1)准备金属衬底:常用的金属衬底有镍、铜等。
首先需要对金属衬底进行表面处理,以提高石墨烯的生长质量。
(2)预处理:将金属衬底放入热处理炉中,在惰性气氛下进行退火处理,去除表面氧化物等杂质。
(3)生长条件设置:将处理后的金属衬底放入石墨炉中,加热到适当的温度。
同时,通过注入碳源气体和惰性气氛来控制反应气氛。
(4)生长时间控制:根据需要得到的石墨烯薄膜厚度,控制反应时间。
一般情况下,生长时间越长,石墨烯的厚度越大。
(5)冷却处理:将反应结束后的金属衬底冷却至室温,取出即可得到CVD生长的石墨烯。
二、CVD石墨烯的转移技术将CVD生长的石墨烯从金属衬底上转移到目标衬底上是进行后续器件制备的关键步骤。
常用的转移技术有机械剥离法、热释放法和湿法转移法。
1. 机械剥离法机械剥离法是最早被采用的一种石墨烯转移技术。
通过在石墨烯上涂覆一层粘性较弱的聚合物,然后用胶带或支撑材料将石墨烯剥离下来,再将其转移到目标衬底上。
这种方法操作简单,但对石墨烯的质量和完整性要求较高。
2. 热释放法热释放法通过在金属衬底上生长一层较厚的二硫化钼(MoS2)薄膜,然后通过加热使MoS2与金属衬底分离,从而将石墨烯转移到目标衬底上。
这种方法相对较容易实现,但需要使用高温来实现MoS2与金属衬底的分离。
目录摘要 (I)Abstract ......................................................................................................................... I I 1 引言 (1)1.1 石墨烯的制备 (2)1.1.1 机械剥离法 (2)1.1.2 电化学剥离法 (2)1.1.3 化学气相沉积法 (3)1.2 石墨烯电极材料的制备 (5)1.3 石墨烯电极材料电化学性能测试 (5)2 实验部分 (6)2.1 实验试剂 (6)2.2 实验仪器 (6)2.3 RHAC和GQDs的制备 (6)2.4 RHAC-GQDs的制备 (6)2.5 电极制备和电池组装 (7)3 结果和讨论 (8)3.1 分析了RHAC的比表面积和孔隙结构 (8)3.2 GQDs的拉曼光谱和荧光光谱分析 (8)3.3 红外光谱分析 (8)3.4 XRD分析 (8)3.5 扫描电镜分析 (9)3.6 循环伏安法测试分析 (9)3.7 恒流充放电试验分析 (9)3.8 电化学阻抗分析 (10)4 结论与展望 (12)4.1 结论 (12)4.2 主要创新点 (12)4.3 展望 (12)参考文献 (13)致谢............................................................................................ 错误!未定义书签。
摘要石墨烯由于其十分优异的电学、热学和机械性能及优良的透光率、比表面积大等优势而广泛的受到人们追捧。
尤其是在2004年成功制得稳定存在的石墨烯之后,更是兴起了一股研究石墨烯的潮流。
如何成本低廉、面积大、数量丰富、质量优异的制备石墨烯,并将其应用在实际生产中是研究人员努力的目标。
本文主要对这几年中一些改善的或新的石墨烯的制备方法以及其电化学性能做了综述,从中可以看到石墨烯在电学方面存在巨大的发展潜力。
石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。
在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。
为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。
这些复合材料具有优异的性能和多样化的应用前景。
本文将探讨石墨烯基复合材料的制备方法以及其性能研究。
一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。
该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。
石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。
CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。
2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。
通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。
这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。
3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。
首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。
该方法可以在实验室条件下进行,操作简单方便。
然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。
二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。
石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。
研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。
2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。
石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。
3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。
石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。
铜基板上 CVD 法生长单晶石墨烯及研究现状吴涛;蒋业华;张晓伟【摘要】石墨烯是一种以S P2键结合的二维碳的同素异形体,其独一无二的优异性能,使得其在过去几十年里受到了石墨烯研究工作者的极大兴趣。
但石墨烯不同于自然界的石墨,并且受限于小尺寸和低产率。
化学气相沉积法(CVD )的出现解决了这些问题,并逐渐发展为一种规模生产大面积、大尺寸、多应用石墨烯的重要方法。
但化学气相沉积法生长石墨烯是多晶石墨烯并且由于晶界会产生降解性能。
因此,石墨烯生长研究的下一个关键问题是如何让大晶粒单晶石墨烯生长。
本文主要叙述了4种代表性预处理铜基板来生长毫米级单层石墨烯的方法:电化学抛光后高温退火、盒状铜箔基板、融化再结晶成新的铜基板、让铜基板富氧。
以及现在发展的石墨烯晶粒的特殊空间结构,这些特殊晶粒包括雪花、六瓣鲜花、金字塔和六角形的石墨烯洋葱圈形状。
综述了利用不同预处理铜基板的工艺得到毫米级单晶石墨烯的方法。
尽管CVD生长单晶石墨烯已经有了空前的进步,但仍然有潜在的挑战,例如,晶元尺寸单晶石墨烯的生长和器件的制作,以及对石墨烯生长机制和生长动力学的进一步了解。
%As a two‐dimensional (2D) sp2‐bonded carbon allotrope ,graphene has attracted enormous interest o‐ver the past decade due to its unique properties .In the initial research ,graphene was isolated from natural graphite ,and limited to small sizes and low yields .Recently developed chemical vapor deposition (CVD) tech‐niques have emerged as an important method for the scalable production of large‐size and high‐quality graphene for various applications .However ,CVD‐derived graphene is polycrystalline and demonstrates degraded proper‐ties induced by grain boundaries .Thus ,the next critical step of graphene growth relies on thesynthesis of large graphene single crystals .We review four representative pathways of pretreating Cu substrates to make millime‐ter‐sized monolayer graphene grains :electrochemical polishing and high‐pressure annealing of Cu substrate , adding of additional Cu enclosures ,melting and resolidfying Cu subst rates ,and oxygen‐rich Cu substrates . Then we further discuss recently developed methods of making graphene grains with special spatial structures , including snowflakes ,six‐lobedflowers ,pyramids and hexagonal graphene onion rings .This review also sum‐marizes the synthesizing millimeter‐sized monolayer graphene grains using different pretreatments .Although great advancements have been achieved in CVD synthesis of graphene single crystals ,potential challenges still exist ,such as the growth of wafer‐s ized graphene single crystals to further facilitate the fabrication of graphene‐based devices ,as well as a deeper understanding of graphene growth mechanisms and growth dynamics in order to make graphene grains with precisely controlled thicknesses and spatial structures .【期刊名称】《功能材料》【年(卷),期】2015(000)016【总页数】8页(P16037-16043,16051)【关键词】CVD;预处理铜基板;特殊空间结构:单晶石墨烯【作者】吴涛;蒋业华;张晓伟【作者单位】昆明理工大学材料科学与工程学院,昆明650000;昆明理工大学材料科学与工程学院,昆明650000;昆明理工大学材料科学与工程学院,昆明650000【正文语种】中文【中图分类】TB341 引言在过去的几十年,由碳原子SP2杂化组成蜂巢状结构的石墨烯由于其优良的物理、机械和光学性能吸引众多研究人员的关注[1-4]。
cvd 铜箔连续生长石墨烯理论说明1. 引言1.1 概述在过去几十年中,石墨烯作为一种具有出色的物理和化学特性的二维材料,在科学界引起了巨大的关注。
它具有高导电性、高透明性、稳定性等优点,可以应用于电子器件、能源储存、催化和生物医学等领域。
尽管石墨烯的制备方法有很多种,但化学气相沉积(CVD)是一种最常用且有效的方法之一。
本文将重点介绍CVD铜箔连续生长石墨烯的理论说明。
首先,我们将介绍CVD 方法及其在石墨烯生长中的应用。
然后,我们将探讨铜箔作为衬底材料的优势以及该材料对石墨烯生长的影响。
最后,我们将详细解析石墨烯生长的机制,并分析其中涉及的关键因素。
1.2 文章结构本文共分为五个主要部分。
本引言部分是第一部分,主要对全文进行概述和总体框架的介绍。
接下来第二部分将详细讲解CVD铜箔连续生长石墨烯的理论说明。
第三部分将介绍我们的实验设计以及对实验结果的详细分析和讨论。
第四部分将解释和讨论实验结果,同时探讨CVD铜箔连续生长石墨烯所具有的优势和挑战。
最后,第五部分是结论部分,总结全文内容,并对未来研究方向进行展望。
1.3 目的本文的主要目的是通过理论说明和实验结果分析,深入了解CVD铜箔连续生长石墨烯的过程以及其中涉及的关键因素。
通过对铜箔作为衬底材料的优势进行探讨,希望能够进一步推动石墨烯在各领域中的应用。
此外,本文还旨在总结目前CVD方法制备石墨烯所面临的挑战,并提出未来研究方向,为相关领域的学者提供参考和启示。
以上就是“1. 引言”部分内容的详细描述,请按需使用。
2. CVD铜箔连续生长石墨烯理论说明:2.1 CVD方法介绍:CVD(化学气相沉积)是一种常用的合成石墨烯的方法之一。
该方法基于在高温下通过加热并使其分解的碳源与金属衬底反应,从而在表面上连续生长单层或多层石墨烯薄膜。
CVD方法具有可扩展性、过程参数可调控以及高质量等优点,因此被广泛应用于石墨烯的制备。
2.2 铜箔作为衬底材料的优势:在CVD法中,铜箔是最常用的衬底材料之一。