2017七年级数学一元一次方程的应用7.doc
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
一元一次方程的解的应用一元一次方程是数学中最基本且常见的方程形式,它具有广泛的应用。
通过解一元一次方程,我们能够解决各类实际问题,从解释自然现象到解决实际生活中的计算问题都离不开一元一次方程。
1. 一元一次方程在几何中的应用在几何学中,一元一次方程可以用来解决诸多问题。
一个典型的例子是计算直线的交点坐标。
假设有两条直线,分别表示为y = k1x + b1和y = k2x + b2,其中k1、k2分别表示两条直线的斜率,b1、b2分别表示两条直线的截距。
当两条直线交于一点时,即存在一个坐标(x0, y0)满足方程组:k1x0 + b1 = k2x0 + b2求解这个方程组即可得到交点的坐标。
2. 一元一次方程在物理中的应用物理学中,一元一次方程是最常见的模型之一,常被用来描述物理量之间的关系。
例如,根据物体运动的速度、时间和位移的关系,可以建立如下方程:v = s / t其中v表示速度,s表示位移,t表示时间。
通过解这个方程,我们可以计算出物体在给定时间内的位移。
3. 一元一次方程在经济学中的应用经济学中,一元一次方程被广泛用于描述经济关系。
例如,假设某商品的销售价格为p,销售量为q,那么销售收入可以表示为: r = p * q其中r表示销售收入。
通过解这个方程,我们可以计算出在不同的价格和销售量情况下的销售收入,从而为经济决策提供依据。
4. 一元一次方程在工程中的应用在工程领域,一元一次方程被广泛应用于各类计算中。
例如,假设某个工程项目的总工时为H,每小时的工资为W,那么总费用可以表示为:C = H * W其中C表示总费用。
通过解这个方程,我们可以计算出不同工时和工资水平下的总费用,从而为工程预算提供参考。
综上所述,一元一次方程的解的应用非常广泛,几乎渗透到了各个领域。
通过解一元一次方程,我们可以解决几何、物理、经济和工程等各类实际问题,为决策和计算提供了方便和依据。
因此,掌握一元一次方程的方法和技巧对于我们在各个领域的学习和工作都至关重要。
列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
初一数学一元一次方程的应用——行程问题行程问题与一元一次方程的联系行程问题,属于一类所谓的“线性优化问题”,是一元一次方程的一种特殊应用。
基本的行程问题涉及求解一趟行程的最短时间,最短路径或者最少的花费,有时候它还要考虑动态的变化因素。
一元一次方程系统也可以用来求解行程问题,例如每一段路径的路程量,行驶时间和费用等信息。
行程问题是一类让人们在最短的时间内从一个地方到达另外一个地方的问题。
使用一元一次方程为基础,可以寻求一条比较理想的行程,并且它的路程总耗费也最少。
例如,有一位旅行者从广州出发,要到深圳终点,当用一元一次方程来研究其中的路途,就会发现它可以比较快地确定一条比较最优的行程。
因此,一元一次方程可以应用在行程问题上,可以让游客比较容易地求得一条有效最优行程。
接下来就看到一元一次方程在行程问题上有什么具体的应用案例:首先,当有一个普通的行程问题时,比如,要求从一个地点去往另一个地点的最短路程,可以将信息用一元一次方程来表达,再建立一个诸如“最大效益函数”之类的函数表达式,对于代价和时间权衡,求出一个最优目标点,以期获得最小耗费(或者各项费用权衡)和最短时间,使得游客可以以最快的时间内到达终点。
其次,在遇到一些动态变化的问题时,也可以利用一元一次方程来解决,比如,要在一段固定的时间里走最短的路径,可以先计算出各个路径的距离所花的费用,然后根据当前时速求解出走每一条路径所花的时间,再综合考虑各种因素,推算出一条最短的行程。
总而言之,一元一次方程可以用来求解行程问题,这样可以使游客更快地到达目的地,节省时间和金钱,也增加了出行的便利性。
希望大家再出游时多多利用一元一次方程来搜索最优行程,让出行更有效率,轻松愉快。
一元一次方程应用题归类列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.各题型一般模型:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:1、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%,求这个月的石油价格相对上个月的增长率。
2、某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7m³,则按每立方米1元收费;若每月用水超过7m³,则超过部分按每立方米2元收费。
如果某居民今年5月缴纳了17元水费,那么这户居民今年5月的用水量为多少m³?3、芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00-22:00,14个小时;谷段为22:00-次日8:00,10个小时。
平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元。
小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元。
(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?4、某工厂食堂第三季度一共节煤7400斤,其中八月份比七月份多节约20%,九月份比八月份多节约25%,问该厂食堂九月份节约煤多少公斤?“等积变形”是以形状改变而体积不变为前提。
一元一次方程应用题1.如果两个课外兴趣小组共有人数54人,两个小数的人数之比是4:5;求两个小组分别有多少人?2.某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?3.甲乙两人身上的钱数之比为7:6,两人去商店买东西后,甲花去50元,乙花去60时,此时他们身上的钱数之比为3:2,则他们身上余下的钱数分别是多少?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?6.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。
7.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人,求甲、乙两队原有人数各多少人?8.甲、乙两车间各有工人若干,如果从乙车间调100人去甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人去乙车间,则两车间的人数相等。
求原来甲、乙车间各有多少人?9.某班级开展活动而分为甲乙两个小组,甲队29人,乙队19人:(1) 若从甲组调x名学生到乙组,使得两组人数相等,则可列方程:;(2) 若从乙组调y名学生到甲组,使得甲组人数是乙组人数的两倍,则可列方程:。
10.如果甲、乙两班共有90人,如果从甲班抽调3人到乙班,则甲乙两班的人数相等,则甲班原有多少人?11.某班级开展植树活动而分为甲乙两个小组,甲队29人,乙队19人,后来发现任务比较重,人手不够,从另外一个班调来12个人分配给两个队,怎样分配才能使甲对人数是乙队的2倍?12.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
一元一次方程的应用一元一次方程是我们在数学学习中最早接触到的方程类型之一。
它由一个未知数和一个或多个常数构成,通常可以通过解方程来求解未知数的值。
一元一次方程在我们的生活中有着广泛的应用,下面将就几个常见的例子加以介绍。
第一种应用场景是经济学中的成本问题。
在经济学中,成本是非常重要的概念,它对于企业决策和生产经营起着重要的作用。
而成本往往和产量有着一定的关系,我们可以通过一元一次方程来描述它们之间的关系。
假设某企业的生产成本与产量成正比关系,且每生产一个单位的产量需要花费固定的成本加上每个单位的产量所需的变动成本。
我们设定生产成本为C,产量为x,固定成本为a,变动成本为b。
那么,我们可以用一元一次方程C = ax + bx来表示这个关系。
求解这个方程,就可以得到产量对应的成本。
这在企业管理和经济决策中提供了重要的计算依据。
第二种应用场景是物理学中的运动问题。
在物理学研究中,我们经常需要研究物体的运动轨迹和速度等问题。
当物体做匀速运动时,我们可以用一元一次方程来描述其位置与时间之间的关系。
假设物体在时刻t=0时的位置为x0,速度为v,时间为t,我们可以用一元一次方程x = x0 + vt来表示物体在不同时间的位置。
这种方程可以帮助我们预测物体在不同时间的位置,或者根据已知的位置和时间来计算速度等相关参数。
第三种应用场景是人力资源管理中的员工薪酬问题。
在企业管理中,给予员工合适的薪酬是保持员工积极性和增加企业竞争力的重要手段之一。
在某些情况下,员工的薪酬可以通过一元一次方程来计算。
假设某公司的员工薪酬由基本工资和绩效工资两部分构成,其中基本工资是固定的,绩效工资与员工的绩效有关。
我们设定员工的绩效得分为x,基本工资为a,绩效工资与绩效得分成正比。
那么,我们可以用一元一次方程y = ax来表示员工的总薪酬y与绩效得分x之间的关系。
通过解这个方程,公司就可以根据员工的绩效得分来确定其薪酬水平。
总之,一元一次方程在经济学、物理学和人力资源管理等领域都有着广泛的应用。
一元一次方程应用题初一简单在初中数学学习中,一元一次方程是一个重要的概念。
它在解决实际问题时有着广泛的应用。
本文将介绍一些初一水平下的简单应用题,帮助读者更好地理解和掌握一元一次方程的使用。
情景一:购买文具小明去文具店买铅笔和橡皮,铅笔每支1元,橡皮每个0.5元。
他一共花了9元买了10支铅笔和橡皮。
请问他买了几支铅笔和几个橡皮?假设小明买了x支铅笔,y个橡皮。
根据题意,可以列出方程组:1.x + y = 102.x + 0.5y = 9通过解方程组,可以得到小明买了6支铅笔和4个橡皮。
情景二:植树某村庄共植树苗300棵,如果每天植树苗数目一样,需要植树苗几天?假设每天植树苗数目为x棵,需要植树m天。
根据题意,可以列出方程:x * m = 300通过解方程,可以得到每天需要植树100棵,植树m天。
情景三:体育课班级有男生和女生共30人参加体育课活动,男生的人数是女生的2倍。
男生站成一排,女生站成一排,男生一排站4个人,女生一排站3个人。
请问男生和女生各有几人?假设男生有x人,女生有y人。
根据题意,可以列出方程组:1.x + y = 302.4x = 3y通过解方程组,可以得到班级里有20名男生和10名女生。
结语一元一次方程是一个简单而重要的数学概念,通过上述情景的应用题,我们可以看到方程可以帮助我们解决各种实际问题。
希望读者在学习数学的过程中,能够灵活运用一元一次方程,提高解决问题的能力。
注意:以上仅为示例,实际题目可能更为复杂,需结合实际情况灵活运用解题方法。
一、一元一次方程的基本概念1. 什么是一元一次方程一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为1的方程。
通常可以用形如ax+b=0的形式表示,其中a和b为已知数,x为未知数。
2. 一元一次方程的解解一元一次方程就是找到满足方程的未知数的取值,使得方程成立。
一元一次方程的解可以有一个或者多个,也可能没有解。
二、一元一次方程应用题的解题方法1. 理解问题在解一元一次方程应用题时,首先要理解问题的意思,明确题目中的已知量和未知量,搞清楚问题的关键信息。
2. 建立方程根据问题的描述和已知量,可以建立相应的一元一次方程。
通常可以根据关键词归纳出方程的形式,比如“某数的5倍加3等于17”可以转化为5x+3=17的方程。
3. 求解方程利用一元一次方程的基本解法,将方程化简为最简形式,然后进行运算求解未知数的值。
可以采用加法、减法、乘法、除法等运算,将未知数的系数移到一边,把常数移到另一边,最终得出未知数的值。
三、一元一次方程应用题的解题技巧1. 画图辅助对于涉及几何或者图形的一元一次方程应用题,可以画图辅助理解问题,建立方程。
通过图形直观地表达问题,更容易理解和解决。
2. 注意单位转化在一些物理或者工程类的应用题中,可能涉及到不同的单位,需要进行单位转化。
在建立方程时,要注意统一单位,以免造成计算错误。
3. 严格审题在解一元一次方程应用题时,要仔细审题,理解题目的要求和条件,确保没有遗漏重要信息。
同时要注意解题的逻辑和推理过程,保证每一步都准确无误。
四、案例分析举例说明一元一次方程应用题的解题过程,包括问题的理解、建立方程、求解方程和最终得出答案的过程。
五、总结总结一元一次方程应用题的解题方法和技巧,强化重点和难点,提醒注意事项,巩固解题思路和方法。
六、练习题设计一些不同类型的一元一次方程应用题,供读者练习和巩固所学知识。
七、结语总结全文内容,强调一元一次方程应用题解题方法和技巧的重要性,鼓励读者多加练习,提高解题能力。
初一数学
一元一次方程应用题分类讲评(7)
7.需设中间(间接)未知数求解的问题
一些应用题中,设直接未知数很难列出方程求解,而根据题中条件设间接未知数,却较容易列出方程,再通过中间未知数求出结果。
例20.甲、乙、丙、丁四个数的和是43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,得到的4个数却相等。
求甲、乙、丙、丁四个数。
【明老师讲评】本题中要求4个量,在后面可用方程组求解。
若用一元一次方程求解,如果设某个数为未知数,其余的数用未知数表示很麻烦。
这里由甲、
乙、丙、丁变化后得到的数相等,故设这个相等的数为x,则甲数为,乙数
为,丙数为,丁数为,由四个数的和是43,有+++
=43
∴x = 36
∴=14;=12;=9;=8
例21.某县中学生足球联赛共赛10轮(即每队均需比赛10场),其中胜1场得3分,平1场得1分,负1场得0分。
向明中学足球队在这次联赛中所负场数比平场数少3场,结果公得19分。
向明中学在这次联赛中胜了多少场?
【明老师讲评】本题中若直接将胜的场次设为未知数,无法用未知数的式子表示出负的场数和平的场数,但设平或负的场数,则可表示出胜的场数。
故设平x场,则负x-3场,胜10-(x+x-3)场,依题意有 3[10-(x+x-3)]+x=19 ∴x=4 ∴ 10-(x+x-3)=5。
第七十五课时
一、课题§5.2一元一次方程的应用(7)
二、教学目标
1.使学生明确列方程解浓度配比问题所依据的等量关系,并会列方程解浓度配比问题;
2.通过本节课的教学,培养学生学以致用的良好习惯,并提高他们分析和解决问题的能力.
三、教学重点和难点
重点:列方程解浓度配比问题.
难点:浓度配比中的溶液、溶剂、溶质和浓度之间的关系
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从日常生活中提出问题
日常生活中,我们将一定量的水放入玻璃杯中,并放入一定量盐,经搅拌后形成均匀的混合物,称为盐水溶液,被溶解的盐称为溶质,溶解盐的水称为溶剂.
1.溶液(盐水)重量、溶质(盐)重量和溶剂(水)重量三者之间存在怎样的关系?
2.当盐水过“咸”时,可向玻璃杯中加水,即增加了溶剂,因而溶液重量增加,但溶质(盐)没有变化,那么是溶液的什么发生变化,从而使盐水溶液变得不“咸”了呢?它与溶质重量和溶液重量存在怎样的关系呢?
3.(1)若盐水a千克,含盐5%,则该盐水中含盐多少千克?
(2)水90千克,盐10千克,混合后含盐的百分比是多少?
(3)水100千克,盐10千克,混合后含盐的百分比是多少?
本节课我们来学习列方程解浓度配比问题.
(二)、师生共同分析浓度配比问题
例1要把30千克含氨16%的氨水稀释成含氨0.15%的氨水,需加入水多少千克?
在分析本题时,可提出如下问题:
1.“含氨16%的氨水30千克”的意义是什么?(30千克氨水中16%是(纯)氨)
2.氨水溶液加水后,哪些量没有变化?哪些量有变化?怎样变化的?
结合学生回答,师生共同将加水前后有关量的情况列表如下
(这里x表示加水的千克数)
然后,启发学生得出本题的相等关系:
加水前含氨的重量=加水后含氨的重量.
解:(由学生板演,解答)
设需加水x千克,依题意,得
30×16%=(30+x)×0.15%
解方程,得 x=3170.
答:需要加水3170千克.
例2 含盐16%的盐水40千克,需要加多少盐,就变成含盐20%的盐水?
分析时,可提出如下问题:
1.盐水溶液加盐前后,与溶液有关的量中,哪些不变?哪些有变化?怎样变化?
2.题中的相等的关系是什么?
(①加盐前水的重量=加盐后水的重量;
②加盐前盐的重量+所加盐的重量=加盐后盐的重量)
鉴于本题具备两个相等关系,故本题有两种解法.请学生分别板演出来,不足之处教师指正.
解法1:设需加盐x千克.
由题意,得(40+x)(1-20%)=40×(1-16%).以下略.
解法2:设需加盐x千克.
由题意,得40×16%+x=(40+x)·20%.以下略.
(三)、引伸训练
例3 有含盐10%的盐水40千克,加入另一种盐水50千克后,就成了含盐25%的盐水,求另一种盐水的浓度?
师生共同分析:两种盐水混合后,浓度发生了变化.形成新的盐溶液后,溶液中盐的重量没变,根据题意,题中相等关系是:
两种盐溶液含盐重量之和=新盐溶液中含盐的重量.
解:(学生自行完成)
设另一种盐溶液浓度为x%,根据题意,得
40×10%+50·x%=(40+50)×25%.
解之,得 x=37
答:略.
此时,教师强调指出:
1.浓度配比问题应根据题中溶液、溶剂、溶质和浓度在“稀释”或“加浓”过程中变与不变的情况,寻找一个相等关系;
2.根据相等关系布列方程.
(四)、课堂练习
1.填空:(投影)
(1)把6千克食盐放入100千克水中,得到盐水溶液 ______ 千克,这种盐水浓度是______ ;
(2)浓度为0.8%的洗涤液中含洗衣粉25克,这时,洗涤液的重量为 ______ 克,水的重量为 ______ 克.
2.有含盐12%的盐水30千克,要使盐水含盐10%,需要加水多少千克?
3.有浓度24%的硫酸溶液72千克,要使硫酸溶液的浓度变为36%,需要加入硫酸多少千克?
4.现有浓度5%的盐水50千克和足够数量的浓度为9%的盐水,要配制浓度为7%的盐水,需要取9%的盐水多少千克?
(五)、师生共同小结
针对本节课学习的内容,可提出以下问题:
1.浓度配比问题中的基本数量关系是什么?
2.在寻找浓度配比问题中的相等关系时需注意什么?
结合学生回答,教师作以下几点补充:
1.浓度配比问题中“稀释”问题一般利用“溶质不变”寻找相等关系,进一步列出方程;“加浓”问题一般用“溶剂不变”寻找相等关系列方程或利用原溶液所含溶质与新加溶质之和等于新溶液的含溶质相等关系列方程;
2.画出示意图(或表)可帮助理解题意,寻找相等关系.
七、练习设计
1.在60克食盐中,加入多少克水,才能配制成浓度为15%的盐水?
2.将含将10%的盐水20千克,变成含盐16%的盐水,需蒸发掉水多少千克?
3.某厂要配制浓度为10%的硫酸溶液2940千克,需要浓度为98%的硫酸溶液溶液多少千克?
4.在浓度为18%的盐水30升中倒入浓度为10%的盐水多少升,才能得到浓度为15%的盐水?
九、教学后记
求解有关浓度配比问题的应用题,关键是明确溶液“稀释”或“加浓”前后,哪些量不变,哪些量改变,从而建立等量关系.
由实际问题引入的目的在于使学生从直观上理解溶液在“稀释”或“加浓”前后有关量的变与不变.从而为最终使有关浓度配比问题的应用题顺利求解铺平道路.。