八上数学期末复习《一次函数最值问题》
- 格式:doc
- 大小:2.19 MB
- 文档页数:6
2019-2020北师大版八年级上册 一次函数动点最值问题(含答案)一、单选题1.如图,正比例函数32y x =的图象与一次函数33y x 42=+的图象交于点A ,若点P 是直线AB 上的一个动点,则线段OP 长的最小值为( )A .1B .32C .65D .22.在平面直角坐标系中,点A 的坐标为()1,2,点B 的坐标为()2,1-,点P 在y 轴上,当PA PB +的值最小时,P 的坐标是( )A .(0,1)B .(0,12) C .(0,0)D .(0,12-) 3.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 的坐标为(2,0),E 为AB 上的点,当△CDE 的周长最小时,点E 的坐标为( )A .(1,3)B .(3,1)C .(4,1)D .(3,2)4.平面直角坐标系xOy 中,已知A (-1,0)、B (3,0)、C (0,-1)三点,D (1,m )是一个动点,当△ACD 的周长最小时,△ABD 的面积为( ) A.23B.43C.83D.1635.如图,在平面直角坐标系中,点P 的坐标为(0,2),直线y=与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 长的最小值为( )A .3B .4C .5D .66.如图所示,已知点C (1,0),直线7y x =-+与两坐标轴分别交于A ,B 两点,D ,E 分别是线段AB ,OA 上的动点,则△CDE 的周长的最小值是( )A .42B .10C .424+D .127.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BC 的值最小( )A .2B .53C .114D .38.已知,如图点A (1,1),B (2,﹣3),点P 为x 轴上一点,当|PA ﹣PB|最大时,点P 的坐标为( )A .(﹣1,0)B .(12,0) C .(54,0) D .(1,0)9.如图,在平面直角坐标系xOy 中,直线33y x =-+与x 轴,y 轴分别交于点A ,B ,Q 为△AOB 内部一点,则AQ +OQ +BQ 的最小值等于( )A .23B .3C .6D .7二、填空题10.如图,在平面直角坐标系中,A(0,1),B(3,12),P 为x 轴上一动点,则PA +PB 最小时点P 的坐标为________.11.如图,已知直线y=34x+3 与x 轴、y 轴分别交于点A、B,线段AB 为直角边在第一内作等腰Rt△ABC,∠BAC=90º.点P 是x 轴上的一个动点,设P(x,0).(1)当x =______________时,PB+PC 的值最小;(2)当x =______________时,|PB-PC|的值最大.12.如图,在直角坐标系中,点,的坐标分别为和,点是轴上的一个动点,且,,三点不在同一条直线上,当的周长最小时,点的坐标是_________.13.已知点A(3,4),点B(﹣1,1),在x轴上有两动点E、F,且EF=1,线段EF在x轴上平移,当四边形ABEF的周长取得最小值时,点E的坐标为________.14.要在马路旁边设一个共享单车投放点,向A 、B 两家公马路司提供服务,投放点应设在什么地方,才能使从A 、B 到它的距离之和最短?小明根据实际情况,以马路旁为y 轴建立了如图所示的平面直角坐标系,测得A 点的坐标为()2,1,B 点的坐标为()4,4,则从A 、B 两点到投放点距离之和为最小值时,投放点的坐标是______.15.如图,点A 的坐标为()1,0-,点B 在直线y x =上运动,则线段AB 的长度的最小值是___.参考答案1.C 【解析】 【分析】根据垂线段最短可知线段OP 的最小值即为点O 到直线AB 的距离,求出交点坐标及线段AB 的长,由三角形面积即能求出点O 到直线AB 的距离. 【详解】解:联立323342y xy x ⎧=⎪⎪⎨⎪=+⎪⎩,解得23x y =⎧⎨=⎩,所以点A 的坐标为(2,3)令33y x 042=+=,解得2x =-,所以B (-2,0) 过点A 作AC 垂直于x 轴交于点C,过点O 作OP 垂直于AB ,由垂线段最短可知此时OP 最小,在Rt ABC ∆中,由A 、B 坐标可知3,4AC BC ==,根据勾股定理得5AB =.1122ABC S OB AC AB OP ∆==OB AC AB OP ∴=即23655OB AC OP AB ⨯===故答案为:C【点睛】本题考查了函数解析式,涉及的知识点包括由解析式求点坐标、三角形面积、勾股定理,由垂线段最短确定OP位置是解题的关键.2.A【解析】【分析】如图,作点A关于y轴的对称点'A,连接'BA交y轴于P,连接PA,根据轴对称的性质可知PA=PA′则点P即为所求根据B、A′坐标求出直线'BA的解析式即可求出P点坐标.【详解】如图,作点A关于y轴的对称点'A,连接'BA交y轴于P,连接PA,∵A、A′关于y轴对称,∴A′坐标为(-1,2),PA=PA′,∴PA+PB=PA′+PB,设直线'BA的解析式为y=kx+b,∵A′(-1,2),B(2,-1)∴2 21k bk b-+=⎧⎨+=-⎩解得11kb=-⎧⎨=⎩,∴直线BA′的解析式为y=-x+1,当x=0时,y=1,∴P点坐标为(0,1)故选A.【点睛】本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题.3.B【解析】【分析】作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【详解】作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,如图所示:∵D(2,0),A(3,0),∴H(4,0),设直线CH解析式为y=ax+b,则:404a b b ==+⎧⎨⎩ ,解得:14a b -⎧⎨⎩==, 所以直线CH 解析式为y=-x+4, ∴x=3时,y=-3+4=1, ∴点E 坐标(3,1) 故选:B . 【点睛】考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E 位置,学会利用一次函数解决交点问题. 4.B 【解析】由题可得,点C 关于直线x =1的对称点E 的坐标为(2,−1), 设直线AE 的解析式为y =kx +b ,则21k b k b -+=⎧⎨+=-⎩ , 解得1313k b ⎧=-⎪⎪⎨⎪=-⎪⎩, 1133y x ∴=-- ,将D (1,m )代入,得112333m =--=- ,即点D 的坐标为(1,23-),∴当△ACD的周长最小时,△ABD的面积=12124423233 AB⨯⨯-=⨯⨯=.故选B.点睛:先根据△ACD的周长最小,求出点C关于直线x=1对称的点E的坐标,再运用待定系数法求得直线AE的解析式,并把D(1,m)代入,求得D的坐标,最后计算,△ABD的面积.5.B【解析】试题分析:根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=5,∴△PBM∽△ABO,∴PM=4.故选B.考点:一次函数图象上点的坐标特征;垂线段最短.6.B【解析】【分析】点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,∵直线AB的解析式为y=-x+7,∴直线CC″的解析式为y=x-1,由71 y xy x-+⎧⎨-⎩==解得43 xy==⎧⎨⎩,∴直线AB与直线CC″的交点坐标为K(4,3),∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴14232mn+⎧=⎪⎪⎨+⎪=⎪⎩,解得:76mn=⎧⎨=⎩∴C″(7,6).连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C ″=22(71)(60)10++-=故答案为:10. 【点睛】本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D 、点E 位置,将三角形的周长转化为线段的长. 7.B 【解析】 【分析】先作出点A 关于y=1的对称点A′,再连接A'B ,求出直线A'B 的函数解析式,再把y=1代入即可得. 【详解】作点A 关于y=1的对称点A'(1,0),连接A'B 交y=1于C ,则033k b k b +⎧⎨+⎩==,解得:3232k b ⎧=⎪⎪⎨⎪=-⎪⎩,故直线A'B 的函数解析式为:3322y x =-,把C 的坐标(a ,1)代入解析式可得,a=53. 故选B . 【点睛】此题主要考查了轴对称--最短路线问题和一次函数的知识,根据已知作出点A 关于y=1的对称点A′是解题关键.8.B【解析】【分析】作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【详解】作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,1),∴C的坐标为(1,﹣1),连接BC,设直线BC的解析式为:y=kx+b,∴1{23 k bk b+=-+=-,解得:2 {1kb=-=,∴直线BC的解析式为:y=﹣2x+1,当y=0时,x=12,∴点P的坐标为:(12,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA﹣PB|=|PC﹣PB|<BC,∴此时|PA﹣PB|=|PC﹣PB|=BC取得最大值.故选:B.【点睛】此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.9.D【解析】【分析】由题意得出OB=3,OA=1,由勾股定理得出AB= 2222(3)12OB OA+=+==2,得出∠OBA=30°,∠OAB=60°,任取△AOB内一点Q,连接AQ、BQ、OQ,将△ABQ绕点A顺时针旋转60°得到△AB′Q′,过B′作B′C⊥x轴于C,证出△QAQ′是等边三角形,得出AQ=QQ′,得出OQ+AQ+BQ=OQ+QQ′+Q′B′,当OQ、QQ′、Q′B′这三条线段在同一直线时最短,即AQ+OQ+BQ的最小值=OB′,求出AC=12AB′=1,B′C=3,得出OC=OA+AC=2,再由勾股定理即可得出结果.【详解】解:∵直线y=﹣3x+3与x轴,y轴分别交于点A,B,当x=0时,y=3;当y=0时,x=1;∴OB=3,OA=1,∴AB=2222(3)12OB OA+=+=,∴∠OBA=30°,∠OAB=60°,任取△AOB内一点Q,连接AQ、BQ、OQ,将△ABQ绕点A顺时针旋转60°得到△AB′Q′,过B′作B′C⊥x 轴于C,如图所示:∴AB′=AB=2,AQ=AQ′,BQ=B′Q′,∠BAB′=∠QAQ′=60°,∴△QAQ′是等边三角形,∴AQ=QQ′,∴OQ+AQ+BQ=OQ+QQ′+Q′B′,∴当OQ、QQ′、Q′B′这三条线段在同一直线时最短,即AQ+OQ+BQ的最小值=OB′,∵∠BAO=∠BAB′=60°,∴∠B′AC=60°,∴AC=12AB′=1,B′C=3,∴OC=OA+AC=2,∴OB′=222202(3)7c B c'+=+=,∴AQ、OQ、BQ之和的最小值是7;故选:D.【点睛】考查了旋转的性质、一次函数图象上点的坐标特征、等边三角形的判定与性质、勾股定理、最短距离等知识;证明△QAQ'是等边三角形是解题的关键. 10.(2,0) 【解析】先作出点A 关于x 轴对称的点A′(0,-1),再连接A′B 交x 轴于点P ,则点P 即为所求.由题中条件设直线A′B 的解析式为y=kx+b ,可得1132b k b -=⎧⎪⎨=+⎪⎩,求出121k b ⎧=⎪⎨⎪=-⎩,即直线A′B 的解析式为y=12x-1,并得到当y=0时,与x 轴的交点坐标(2,0). 故答案为:(2,0).11.3 -21 【解析】试题分析:(1)作点B 关于x 轴的对称点点B ',连接B 'C 交x 轴与点P ,此时PB +PC 的值最小,作CD ⊥x 轴交于点D ,要求点P 的横坐标即要求直线B 'C 的解析式,即要求点B '、C 的坐标,B '坐标不难求,C 的坐标通过△AOB ≌△CDA 全等可以求得;(2)延长CB 交x 轴于点P ,此时|PB -PC |的值最大,要求点P 横坐标,即要求直线BC 的解析式,求出直线BC 的解析式,令y =0,求出点P 的坐标即可. 试题解析:(1)作点B 关于x 轴的对称点点B ',连接B 'C 交x 轴与点P ,此时PB +PC 的值最小,作CD ⊥x轴交于点D ,令x =0,y =3,B (0,3);令y =0,x =4,A (4,0), ∴B '(0,-3),AO =4,BO =3,∵等腰Rt △ABC ,∴∠BAC =90°,AB =AC , ∴∠BAO +∠CAD =90°, ∵∠CAD +∠ACD =90°, ∴∠BAO =∠ACD , 在△AOB 和△CDA 中,BAO ACD BOA ADC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOB ≌△CDA , ∴AO =CD =4,BO =AD =3, ∴OD =7, ∴C (7, 4),设直线B 'C 的解析式为:y =kx +b ,473k b b =+⎧⎨=-⎩,解得13k b =⎧⎨=-⎩,∴y =x -3, 令y =0,x =3;(2)延长CB 交x 轴于点P ,此时|PB -PC |的值最大, 设直线BC 解析式为:y =kx +b ,347b k b =⎧⎨=+⎩,解得173k b ⎧=⎪⎨⎪=⎩, ∴y =17x +3, 令y =0,x =-21.点睛:本题关键在于利用轴对称的性质以及三角形三边关系确定P 点的位置. 12.(0,3) 【解析】试题分析:将点作关于y 轴的对称点A′,连接A′B 与y 轴的交点就是点C 的坐标. 考点:(1)、轴对称图形;(2)、一次函数13.(﹣25,0) 【解析】如图,过点A 作x 轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B 关于x 轴的对称点B′,连接A′B′,交x 轴于点E ,在x 轴上截取线段EF=1,则此时四边形ABEF 的周长最小.∵A(3,4),∴A′(2,4),∵B(-1,1),∴B′(-1,-1).设直线A′B′的解析式为y=kx+b,则241k bk b+=⎧⎨-+=-⎩,解得,k=53,b=23.∴直线A′B′的解析式为y=53x+23,当y=0时,53x+23=0,解得x=-25.故线段EF平移至如图所示位置时,四边形ABEF的周长最小,此时点E的坐标为(-25,0).点睛:本题考查了待定系数法求一次函数的解析式,轴对称-最短路线问题,根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.14.35【解析】【分析】可先找点A关于y轴的对称点C,求得直线BC的解析式,直线BC与y轴的交点就是所求的点.【详解】作A 关于y 轴的对称点C ,则C 的坐标是()2,1-,设BC 的解析式是y kx b =+,则{4k b 42k b 1+=-+=,解得:122k b ⎧=⎪⎨⎪=⎩,则BC 的解析式是1y x 22=+, 令x 0=,解得:y 2=, 则派送点的坐标是()0,2,从A 、B 两点到投放点距离之和的最小值是226(41)35+-=,故答案为:35. 【点睛】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定投放点的位置是关键.15.22【分析】当线段AB 最短时,直线AB 与直线y x =垂直,根据勾股定理求得AB 的最短长度.【详解】解:当线段AB 最短时,直线AB 与直线y x =垂直,过点A 作AB ⊥直线l ,因为直线y x =是一、三象限的角平分线,所以'45AOB ∠=,所以'45OAB ∠=,所以''AB OB =,222''AB OB OA ∴+=,即22'1AB =, 所以2'2AB =.故答案是:22. 【点睛】 考查了垂线段最短的性质,一次函数图象上点的坐标特征,勾股定理的应用,熟知垂线段最短是解。
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第12章《一次函数》解答题精选一.解答题(共24小题)1.(2020春•谢家集区期末)如图,直线l1:y=﹣3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,﹣1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积;(3)在平面内是否存在点E,使以A、B、D、E为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标,若不存在,请说明理由.2.(2019秋•宿松县校级期末)2017年“中国移动”公司提供两种通讯收费方案供客户选择.根据以上信息,解答下列问题:(1)设通话时间为x分钟,方案一的通讯费用为y1元,方案二的通讯费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你通过计算说明如何选用通讯收费方案更合算.(3)小明的爸爸每月的通话时间约为500分钟,应选用哪种通讯收费方案.3.(2019秋•宿松县校级期末)小刚同学学习一次函数的图象与性质后,结合平移知识对一次函数的表达式进行了研究.(1)把直线y=2x沿x轴方向向左平移1个单位长度,得到的一次函数的表达式为;把直线y =2x沿x轴方向向左平移2个单位长度,得到的一次函数的表达式为;把直线y=2x沿x轴方向向左平移3个单位长度,得到的一次函数的表达式为;…….(2)把直线y=2x沿x轴方向向左(或向右)平移n(n是正整数)个单位长度,根据(1)的规律,写出平移得到的一次函数的表达式;(3)把直线y=mx(m≠0)沿x轴方向向左(或向右)平移n(n是正整数)个单位长度,写出平移得到的一次函数的表达式.4.(2020春•镜湖区期末)公安部交管局部署在全国开展“一盔一带”安全守护行动,自2020年6月1日起,要求骑乘电动车需要佩戴头盔,市场上头盔出现热销,某厂家每月固定生产甲、乙两种型号的头盔共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如下表:型号甲乙价格(元/只)种类原料成本60 40销售单价90 60生产提成 5 4(1)若该厂家五月份的销售收入为1500万元,求甲、乙两种型号的产品分别是多少万只?(2)厂家实行计件工资制,即工人每生产一只头盔获得一定金额的提成,如果厂家六月份投入总成本(原料总成本+生产提成总额)不超过1195万元,应怎样安排甲、乙两种型号头盔的产量,可使该月厂家所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本).5.(2020春•和县期末)已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)求当﹣3<y≤1时,自变量x取值范围.6.(2020春•铜陵期末)如图所示,直线l是正比例函数y=kx(k是常数,k≠0)的图象,把直线l分别向上、向下平移b(b>0)个单位长度后,所得直线l1与x,y轴分别相交于点A,B;所得直线l2与x,y 轴分别相交于点C,D,连接AD,BC.(1)求证:四边形ABCD是菱形;(2)当k取何值时,四边形ABCD是正方形?7.(2019秋•宿松县期末)新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:苹果芦柑香梨每辆汽车载货量(吨)7 6 5每吨水果获利(万元)0.15 0.2 0.1(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围(2)用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w的最大值.8.(2019秋•石台县期末)甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)求甲车距B地的路程y1关于x的函数解析式;(2)求乙车距B地的路程y2关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,乙车距B地的路程为km.9.(2019秋•蜀山区期末)某公司欲将m 件产品全部运往甲,乙,丙三地销售(每地均有产品销售),运费分别为40元/件,24元/件,7元/件,且要求运往乙地的件数是运往甲地件数的3倍,设安排x (x 为正整数)件产品运往甲地.(1)根据信息填表:甲地 乙地 丙地产品件数(件) x 3x运费(元)40x (2)若总运费为6300元,求m 与x 的函数关系式并求出m 的最小值.10.(2019秋•东至县期末)如图,直线y =kx +1(k ≠0)与两坐标轴分别交于点A 、B .直线y =﹣2x +4与y 轴交于点C ,与直线y =kx +1交于点D .△ACD 的面积为32.(1)求k 的值;(2)直接写出不等式x +1<﹣2x +4的解集;(3)点P 在x 轴上,如果△DBP 的面积为4,点P 的坐标.11.(2019秋•裕安区期末)已知一次函数y =kx +b 的图象经过点(﹣2,5),并且与y 轴相交于点P ,直线y =﹣x +3与y 轴相交于点Q ,点Q 恰与点P 关于x 轴对称,求这个一次函数y =kx +b 的表达式.12.(2019秋•裕安区期末)小明平时喜欢玩“开心消消乐”游戏.本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:月份x 9 10 11 12 13(第二年元月) 14(第二年2月)成绩(分) 90 80 70 60 … …(1)以月份为轴,根据上表提供的数据在平面直角坐标系中描点.(2)观察(1)中所描点的位置关系,猜想y 与x 之间的的函数关系,并求出所猜想的函数表达式.(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时x =13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.13.(2019秋•当涂县期末)已知一次函数y=kx+b,它的图象经过(1,﹣3),(4,6)两点.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.14.(2019秋•宣城期末)如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数y=kx+b的图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数表达式;(2)求△AOD的面积.15.(2019秋•蜀山区期末)在平面直角坐标系xOy中,△ABC如图所示,点A(﹣3,2),B(1,1),C(0,4).(1)求直线AB的解析式;(2)求△ABC的面积;(3)一次函数y=ax+3a+2(a为常数).①求证:一次函数y=ax+3a+2的图象一定经过点A;②若一次函数y=ax+3a+2的图象与线段BC有交点,直接写出a的取值范围.16.(2019秋•临泉县期末)已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.17.(2019秋•肥东县期末)为加强校园文化建设,某校准备打造校园文化墙,需用甲、乙两种石材经市场调查,甲种石材的费用y(元)与使用面积x(m2)间的函数关系如图所示,乙种石材的价格为每平方米50元.(1)求y与x间的函数解析式;(2)若校园文化墙总面积共600m2,其中使用甲石材xm2,设购买两种石材的总费用为w元,请直接写出w与x间的函数解析式;(3)在(2)的前提下,若甲种石材使用面积多于300m2,且不超过乙种石材面积的2倍,那么应该怎样分配甲、乙两种石材的面积才能使总费用最少?最少总费用为多少元?18.(2019秋•濉溪县期末)已知y是x的一次函数,它的图象上有两点分别为点A(1,1),B(5,9).(1)求这个一次函数的表达式;(2)判断点C(3,7)是否在这条直线上;(3)当x取何值时,y>0?19.(2019秋•濉溪县期末)如图,在平面直角坐标系中AD⊥BC,垂足为D,交y轴于点H,直线BC的解析式为y=﹣2x+4.点H(0,2),(1)求证:△AOH≌△COB;(2)求D点的坐标.20.(2019秋•潜山市期末)市教育局在全市中小学推广某学校“品格教育”科研成果,其中“敬老孝亲”是“品格教育”亮点之一.重阳节(农历九月初九)快到了,某校八年级(1)班班委发起为老人们献上真挚的节日祝福活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.5元买进鲜花,并按每支4.5元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额﹣成本)21.(2019秋•潜山市期末)已知直线l1:y1=mx﹣4与直线l2:y2=﹣x+n交于点A(2,4),直线l1与x 轴交于点B,直线l2与y轴交于点C.(1)求m,n的值;(2)求当x为何值时,y1>y2,y1<y2;(3)求△ABC的面积.22.(2019秋•安庆期末)某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90,x为整数)天的售价y与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(200﹣2x)件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润;23.(2019秋•安庆期末)(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.24.(2019秋•宿州期末)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线,顺次为A楼、B楼、C楼,其中A楼与B楼之间的距离为40米,B楼与C楼之间的距离为60米.已知A楼每天有20人取奶,B楼每天有70人取奶,C楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A楼与C楼所有取奶的人到奶站的距离之和等于B楼所有取奶的人到奶站的距离之和.(1)若按照方案一建站,取奶站应建在什么位置?(2)若按照方案二建站,取奶站应建在什么位置?2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第12章《一次函数》解答题精选参考答案与试题解析一.解答题(共24小题)1.【解答】解:(1)设直线l 2的表达式为y =kx +b ,则{4k +k =03k +k =−1.5,解得{k =1.5k =−6, 故直线l 2的表达式为y =1.5x ﹣6;(2)对于y =﹣3x +3,令y =0,则﹣3x +3=0,解得x =1,故点A (1,0),则AB =3,联立l 1、l 2的表达式得{k =−3k +3k =1.5k −6,解得{k =2k =−3, 故点D (2,﹣3),∴△ABD 的面积=12×AB ×|y D |=12×3×3=92;(3)存在,理由:①当AB 是边时,则DE =AB =3,而点D (2,﹣3),故点E (5,﹣3)或(﹣1,﹣3);②当AB 是对角线时,由中点公式得:12(1+4)=12(2+x E )且12(0+0)=12(﹣3+y E ), 解得{k k =3k k =3,故点E (3,3), 综上,点E 的坐标为(5,﹣3)或(﹣1,﹣3)或(3,3).2.【解答】解:(1)根据题意知,当0≤x ≤50时,y 1=40.当x >50时,y 1=40+(x ﹣50)×0.1=35+0.1x .综上所述,y 1={40(0≤k ≤50)0.1k +35(k >50). y 2=0.2x (x ≥0);(2)当0≤x ≤50时,y 1=40>y 2,选择方案二合算;当x >50时:①y 1>y 2,即0.1x +35>0.2x ,解得x <350,选择方案二合算;②y 1=y 2,即0.1x +35=0.2x ,解得x =350,选择两种方案一样合算;③y 1<y 2,即0.1x +35<0.2x ,解得x >350,选择方案一合算.综上所述,当通话时间小于350分钟,选择方案二合算;当通话时间为350分钟,选择两种方案一样合算;当通话时间大于350分钟,选择方案一合算;(3)由于500>350,所以小明的爸爸选用通讯收费方案一合算.3.【解答】解:(1)∵直线y =2x 沿x 轴方向向左平移1个单位长度,∴得到函数y =2(x +1)=2x +2;∵直线y =2x 沿x 轴方向向左平移2个单位长度,∴得到的一次函数的表达式为y =2(x +2)=2x +4;∵直线y =2x 沿x 轴方向向左平移3个单位长度,∴得到的一次函数的表达式为y =2(x +3)=2x +6;故答案为:2x +2;2x +4;2x +6;(2)直线y =2x 沿x 轴方向向左平移n (n 是正整数)个单位长度,根据(1)的规律,可得平移得到的一次函数的表达式为y =2(x +n )=2x +2n ;直线y =2x 沿x 轴方向向右平移n (n 是正整数)个单位长度,根据(1)的规律,可得平移得到的一次函数的表达式为y =2(x ﹣n )=2x ﹣2n ;故答案为:y =2x +2n 或y =2x ﹣2n ;(3)直线y =mx (m ≠0)沿x 轴方向向左平移n (n 是正整数)个单位长度,得到的一次函数的表达式为y =m (x +n )=mx +mn ;直线y =mx (m ≠0)沿x 轴方向向右平移n (n 是正整数)个单位长度,得到的一次函数的表达式为y =m (x ﹣n )=mx ﹣mn ;故答案为:y =mx +mn 或y =mx ﹣mn .4.【解答】解:(1)设甲型号的产品为x 万只,则乙型号的产品为(20﹣x )万只,由题意得:90x +60(20﹣x )=1500,解得:x =10,则20﹣x =20﹣10=10,答:甲、乙两种型号的产品分别是10万只、10万只;(2)设安排甲型号头盔的产量为y 万只,则乙型号头盔的产量为(20﹣y )万只,由题意得:(60+5)y +(40+4)(20﹣y )≤1195,解得:y ≤15,由题意得:利润W =(90﹣60﹣5)y +(60﹣40﹣4)(20﹣y )=9y +320,当y =15时,W 最大,最大值为:9×15+320=455(万元),此时20﹣y =5,即安排甲型号头盔的产量为15万只,则乙型号头盔的产量为5万只,可使该月厂家所获利润最大,最大利润为455万元.5.【解答】解:(1)设一次函数解析式为y =kx +b (k ≠0), 把x =﹣4,y =9;x =6,y =﹣1代入得:{−4k +k =96k +k =−1, 解得:{k =−1k =5, 则一次函数解析式为y =﹣x +5;(2)y =﹣x +5,∵k =﹣1<0,∴y 随x 的增大而减小,当y =﹣3时,﹣3=﹣x +5,即x =8,当y =1时,1=﹣x +5,即x =4,则当﹣3<y ≤1时,自变量x 的范围是4≤x <8.6.【解答】(1)证明:∵直线y =kx +b 与x ,y 轴分别相交于点A ,B ,∴A (−k k ,0),B (0,b ),∵直线y =kx ﹣b 与x ,y 轴分别相交于点C ,D ,∴C (k k ,0),D (0,﹣b ),∴OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形.(2)解:∵四边形ABCD 是菱形,∴当AC =BD 时,四边形ABCD 是正方形,∴b =k k , ∴k =1.7.【解答】解:(1)设装运苹果的车辆为x 辆,装运芦柑的车辆为y 辆,则运香梨的车辆(10﹣x ﹣y )辆.7x +6y +5(10﹣x ﹣y )=60,∴y =﹣2x +10(2≤x ≤4);(2)w =7×0.15x +6×0.2(﹣2x +10)+5×0.1[10﹣x ﹣(﹣2x +10)],即w =﹣0.85x +12,∵﹣0.85<0,∴w 随x 的增大而减小,∴当x =2时,w 有最大值10.3万元,∴装运苹果的车辆2辆,装运芦柑的车辆6辆,运香梨的车辆2辆时,此次销售获利最大,最大利润为10.3万元.8.【解答】解:(1)设y 1关于x 的函数解析式为y 1=kx +b ,由题意可得{k =280160=1.5k +k∴{k =−80k =280∴y 1=﹣80x +280,(2)由图象可得乙车的速度为:601=60千米/时,∴相遇时间=28060+80=2(小时) ∴经过2小时,甲乙两车相遇,且距离B 地120公里;∴乙车以原速原路返回到B 地所需时间为2小时,当2<x ≤4时,设y 2=mx +n ,且过(4,0),(2,120), ∴{0=4k +k 120=2k +k∴{k =−60k =240∴y 2=﹣60x +240,∴y 2={60k (0≤k ≤2)−60k +240(2<k ≤4)(3)由题意可得:甲车到达B 地时间=28080=72小时,∴y 2=﹣60×72+240=30km , 故答案为:30.9.【解答】解:(1)表格如下:甲地 乙地丙地 产品件数(件) x 3xm ﹣4x 运费(元) 40x 72x7m ﹣28x 故答案为:m ﹣4x ;72x ;7m ﹣28x ;(2)由题意得:40x +72x +7m ﹣28x =6300;化简得:84x +7m =6300,∴m =﹣12x +900,∵m >4x ,∴﹣12x +900>4x ,∴k <2254,∵x 为正整数,∴当x =56时,m 取得最小值,m =228.10.【解答】解:(1)当x =0时,y =kx +1=1,则A (0,1),当x =0时,y =﹣2x +4=4,则C (0,4),设D 点的坐标为(t ,﹣2t +4),∵△ACD 的面积为32,∴12×(4﹣1)×t =32,解得t =1,∴D (1,2),把D (1,2)代入y =kx +1得k +1=2,∴k =1;(2)不等式x +1<﹣2x +4的解集为x <1;(3)当y =0时,x +1=0,解得x =﹣1,则B (﹣1,0),设P (m ,0),∵△DBP 的面积为4,∴12×|m +1|×2=4,解得m =3或﹣5,∴P 点坐标为(﹣5,0)或(3,0).11.【解答】解:由题意可得,点Q 的坐标是(0,3),点P 的坐标是(0,﹣3),把(0,﹣3),(﹣2,5)代入一次函数y =kx +b 得b =﹣3,﹣2k +b =5,解得b =﹣3,k =﹣4.所以这个一次函数的表达式:y =﹣4x ﹣3.12.【解答】解:(1)如图所示;(2)猜想y 与x 之间的的函数关系是一次函数关系,设y =kx +b ,由题意可得{90=9k +k80=10k +k解得{k =−10k =180∴y =﹣10x +180;(3)当x =13时,y =50,建议小明,放下游戏,认真学习.13.【解答】解:(1)将(1,﹣3),(4,6)代入y =kx +b 中,得:{k +k =−34k +k =6,解得:{k =3k =−6,∴y 与x 之间的函数关系式为y =3x ﹣6.(2)把点(a ,3)代入y =3x ﹣6得,3a ﹣6=3解得:a =3,∴a 的值为3.14.【解答】解:(1)∵正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m ,2)∴2m =2,解得m =1,∴A (1,2),把A (1,2)和B (﹣2,﹣1)代入y =kx +b ,得{k +k =2−2k +k =−1,解得k =1,b =1 则一次函数表达式是y =x +1;(2)y =x +1中,令y =0,则x =﹣1,∴D (﹣1,0),∴△AOD 的面积=12×1×2=1.15.【解答】解:(1)设直线AB 的解析式是y =kx +b , 将点A (﹣3,2),点B (1,1)代入的,得{−3k +k =2k +k =1解得,{k =−14k =54∴直线AB 的解析式是k =−14k +54;(2)设直线AB 与y 轴的交点为D 点,则点D 的坐标为(0,54),k △kkk =k △kkk +k △kkk =12×(4−54)×3+12×(4−54)×1=112;(3)①证明:∵y =ax +3a +2=a (x +3)+2, ∴y =ax +3a +2必过点(﹣3,2),即必过A 点;②把B (1,1)代入y =ax +3a +2得,1=a +3a +2,解得a =−14;把C (0,4)代入y =ax +3a +2得,4=3a +2,解得a =23,∴若一次函数y =ax +3a +2的图象与线段BC 有交点,则−14≤k ≤23且a ≠0.16.【解答】解:(1)联立两函数解析式可得方程组{k =k −2k =k −4,解得:{k =1k =−3, ∴点A 的坐标为(1,﹣3);(2)当y 1=0时,﹣x ﹣2=0,解得:x =﹣2,∴B (﹣2,0),当y 2=0时,x ﹣4=0,解得:x =4,∴C (4,0),∴CB =6,∴△ABC 的面积为:12×6×3=9;(3)由图象可得:y 1≤y 2时x 的取值范围是x ≥1.17.【解答】解:(1)①0≤x ≤300时,设y =kx +b (k ≠0),过(0,0),(300,24000),{k =0300k +k =24000,解得{k =80k =0, ∴y =80x ,②x >300时,设y =kx +b (k ≠0),过(300,24000),(500,30000),{300k +k =24000500k +k =30000,解得{k =30k =15000, ∴y =30x +15000,∴y ={80k (0≤k ≤300)30k +15000(k >300);(2)当0≤x ≤300时,w =80x +50(600﹣x )=30x +30000;当x >300时,w =30x +15000+50(600﹣x ),即w =﹣20x +45000;∴k ={30k +3000(0≤k ≤300)−20k +45000(k >300);(3)设甲种石材为 am 2,则乙种石材(600﹣a )m 2,{k >300k ≤2(600−k ),∴300<x ≤400,由(2)知w =﹣20x +45000,∵k =﹣20<0,∴W 随x 的增大而减小,即甲400m 2,乙200m 2时,W min =﹣20×400+45000=37000.答:甲种石材400m 2,乙种石材200m 2时,总费用最少,最少总费用为37000元.18.【解答】解:(1)设一次函数解析式为y =kx +b ,∵图象过两点A (1,1),B (5,9),∴{1=k +k9=5k +k,解得:{k =2k =−1, ∴函数解析式为:y =2x ﹣1;(2)当x =3时,y =6﹣1=5≠7,∴点C (3,7)不在这条直线上;(3)∵y >0,∴2x ﹣1>0,∴x >12.19.【解答】解:(1)由y =﹣2x +4可求得OC =4,OB =OH =2,∵∠AOH =∠COB =90°,∴∠HAO +∠ABC =90°∠BCO +∠ABC =90°即∠HAO =∠BCO ,∴△AOH ≌△COB (AAS );(2)由(1)得OA =4,即A (﹣4,0)∵H (0,2),∴于是求得直线AH 解析式为:k =12k +2,联立直线BC 的解析式为y =﹣2x +4.可求得x =45,y =125∴D (45,125).20.【解答】解:(1)y =4.5x ;(2)w =4.5x ﹣1.5x ﹣40=3x ﹣40,当w ≥500时,3x ﹣40≥500解得x ≥180答:要筹集不少于500元的慰问金,则至少要卖出鲜花180支.21.【解答】解:(1)把A (2,4)代入y 1=mx ﹣4得2m ﹣4=4,解得m =4;把A (2,4)代入y 2=﹣x +n 得﹣2+n =4,解得n =6;(2)当x >2时,y 1>y 2,当x <2时,y 1<y 2;(3)直线y =4m ﹣4于y 轴的交点D 的坐标为(0,﹣4),与x 轴的交点B 的坐标为(1,0), 直线y =﹣x +6与y 轴的交点C 的坐标为(0,6),所以△ABC 的面积=S △ACD ﹣S △BCD =12×10×2−12×10×1=5. 22.【解答】解:(1)当0≤x ≤50时,设y 与x 的解析式为:y =kx +40,则50k +40=90,解得k =1,∴当0≤x ≤50时,y 与x 的解析式为:y =x +40,∴售价y 与x 之间的函数关系式为:y ={k +40(0≤k ≤50)90(k ≥50);(2)设该商品在销售过程中的利润为w ,当0≤x ≤50时,w =(x +40﹣30)(200﹣2x )=﹣2x 2+180x +2000=﹣2(x ﹣45)2+6050,∵a =﹣2<0且0≤x ≤50,∴当x =45时,w 取最大值,最大值为6050元;当50≤x ≤90时,w =(90﹣30)(200﹣2x )=﹣120x +1200,∵﹣120<0,∴w 随x 的增大而减小,∴当x =50时,该商品在销售过程中的利润最大,最大值为:(90﹣30)×(200﹣2×50)=6000(元). ∵6050>6000,∴x =45时,w 增大,最大值为6050元.答:第45天时,该商品在销售过程中的利润最大,最大利润为6050元.23.【解答】解:(1)∵AD ⊥ED ,BE ⊥ED ,∴∠D =∠E =90°,∴∠ACD +∠CAD =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠BCE =∠CAD ,在△BEC 和△CDA 中{∠k =∠k kkkk =kkkk kk =kk,∴△BEC ≌△CDA (AAS );(2)①如图2过点C 作CH ⊥x 轴于H ,同(1)的方法得,△ACH ≌△BAO (AAS ),∴AH =OB =4,CH =OA =2,∴OH =OA +AH =6,∴C (6,2),同理:C '(4,6)故答案为:C (4,6)或C (6,2);②如图,作BP ⊥MN 交MN 的延长线于P ,作DQ ⊥MN 于Q∵CA =CB ,∠CAB =45°,∴∠CBA =∠CAB =45°,∴∠ACB =90°,∵CM ⊥AE ,∴∠AMC =90°=∠ACB ,∵∠BCP +∠BCA =∠CAM +∠AMC ,∵∠BCA =∠AMC ,∴∠BCP =∠CAM ,在△CBP 与△ACM 中,{∠kkk =∠kkkkkkk =kkkk kk =kk,∴△CBP ≌△ACM (AAS ),∴MC =BP ,同理,CM =DQ ,∴DQ =BP在△BPN 与△DQN 中,{∠kkk =∠kkkkkkk =kkkk kk =kk,∵△BPN ≌△DQN (AAS ),∴BN =ND ,∴N 是BD 的中点.24.【解答】解:(1)设取奶站建在距A 楼x 米处,所有取奶的人到奶站的距离总和为y 米.①当0≤x ≤40时,y =20x +70(40﹣x )+60(100﹣x )=﹣110x +8800∴当x =40时,y 的最小值为4400,②当40<x ≤100,y =20x +70(x ﹣40)+60(100﹣x )=30x +3200此时,y的值大于4400因此按方案一建奶站,取奶站应建在B处;(2)设取奶站建在距A楼x米处,①0≤x≤40时,20x+60(100﹣x)=70(40﹣x)解得x=−3203<0(舍去)②当40<x≤100时,20x+60(100﹣x)=70(x﹣40)解得:x=80因此按方案二建奶站,取奶站建在距A楼80米处.。
一次函数综合最值问题“将军饮马、胡不归”一、解答题1已知一次函数y=4kx+5k+132k≠0.(1)无论k为何值,函数图象必过定点,求该定点的坐标;(2)如图1,当k=-12时,一次函数y=4kx+5k+132的图象交x轴,y轴于A、B两点,点Q是直线l2:y=x+1上一点,若S△ABQ=6,求Q点的坐标;(3)如图2,在(2)的条件下,直线l2:y=x+1交AB于点P,C点在x轴负半轴上,且S△ABC=203,动点M 的坐标为a,a,求CM+MP的最小值.2已知一次函数y=4kx+5k+132(k≠0).(1)无论k为何值,函数图象必过定点,则该定点的坐标;(2)如图1,当k=-12时,该直线交x轴,y轴于A,B两点,直线l2:y=x+1交AB于点P,点T是l2上一点,若S△ABT=9,求T点的坐标;(3)如图2,在第2问的条件下,已知D点在该直线上,横坐标为1,C点在x轴负半轴,∠ABC=45°,点M 是x轴上一动点,连接BM,并将线段BM绕点M顺时针旋转90°得到MQ,①求点C的坐标;②CQ+QD的最小值为.3如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x2 2,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.4已知一次函数y=kx+b(k≠0)与x轴交于点A(3,0),且过点7,8,回答下列问题.(1)求该一次函数解析式;(2)一次函数的解析式也称作该直线的斜截式方程,如解析式y=kx+b我们只需要将y向右移项就可以得到kx-y+b=0,将x前的系数k替代为未知数A,将y前的系数1替代为未知数B,将常数项b替代为未知数C,即可得到方程Ax+By+C=0,该二元一次方程也称为直线的一般方程(其中A一般为非负整数,且A、B不能同时为0).一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点P x0,y0到直线Ax+By+C=0的距离d 公式是:d=Ax0+By0+CA2+B2如:求:点P1,1到直线y=-13x+32的距离.5如图,一次函数y=kx+b的图象交x轴于点A,OA=4,与正比例函数y=3x的图象交于点B,B 点的横坐标为1.(1)求一次函数y=kx+b的解析式;(2)若点C在y轴上,且满足S△BOC=12S△AOB,求点C的坐标;(3)若点D4,-2,点P是y轴上的一个动点,连接BD,PB,PD,是否存在点P,使得△PBD的周长有最小值?若存在,请直接写出△PBD周长的最小值.6在平面直角坐标系xoy中,一次函数y=34x+3的图像分别与x轴、y轴交于A、B两点,点C为x轴正半轴上的一个动点,设点C的横坐标为t.(1)求A、B两点的坐标;(2)点D为平面直角坐标系xoy中一点,且与点A、B、C构成平行四边形ABCD.①若平行四边形ABCD是矩形,求t的值;②在点C运动的过程中,点D的纵坐标是否发生变化,若不变,求出点D的纵坐标;若变化,说明理由;③当t为何值时,BC+BD的值最小,请直接写出此时t的值及BC+BD的最小值.7已知,一次函数y=(2-t)x+4与y=-(t+1)x-2的图像相交于点P,分别与y轴相交于点A、B.其中t为常数,t≠2且t≠-1.(1)求线段AB的长;(2)试探索△ABP的面积是否是一个定值?若是,求出△ABP的面积;若不是,请说明理由;(3)当t为何值时,△ABP的周长最小,并求出△ABP周长的最小值.8如图1,已知一次函数y=x+3与x轴,y轴分别交于B点,A点,x正半轴上有一点C,∠ACO= 60°,以A,B,C为顶点作平行四边形ABCD.(1)求C点坐标.(2)如图2,将直线AB沿y轴翻折,翻折后的直线交CD于E点,在y轴上有一个动点P,x轴上有一动点Q,当DP+PQ+QE取得最小值时,求此时(DP+PQ+QE)2的值.(3)如图3,将△AOC向左平移使得点C与坐标原点O重合,A的对应点为A ,O的对应点为O ,将△A O O绕点O顺时针旋转,旋转角为α0°≤α≤180°,在旋转过程中,直线AB与直线A O 、A O交于M,G两点,在旋转过程中,△A MG能否成为等腰三角形,若能,求出所满足条件的α,若不能,请说明理由.9(1)问题解决:如图1,在平面直角坐标系xOy中,一次函数y=1x+1与x轴交于点A,与y轴交于点B,4以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,点A、B、C的坐标分别为、、.(2)综合运用:①如图2,在平面直角坐标系xOy中,点A坐标(0,-6),点B坐标(8,0),过点B作x轴垂线l,点P是l上一动点,点D是在一次函数y=-2x+2图像上一动点,若△APD是以点D为直角顶点的等腰直角三角形,请求出点D的坐标.②如图2,在⑵的条件中,若M为x轴上一动点,连接AM,把AM绕M点逆时针旋转90°至线段NM,ON+AN的最小值是.10已知一次函数y =kx +32的图象与x 轴交于点A ,与y 轴交于点B ,点M 的坐标为0,m ,其中0<m <32.(1)若点A (-32,0),过点O 作OP ⊥AM ,连接BP 并延长与x 轴交于点C ,①求k 的值;②求证:BP PC =OM OC ;(2)若点A -2,0 ,求2AM +BM 的最小值.11如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为,点B的坐标为;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有;(都写出来)②试求线段OQ长的最小值.12如图一次函数y1=k1x+3的图象与坐标轴相交于点A-2,0和点B,与反比例函数y2=k2x (x>0)的图象相交于点C2,m.(1)求出一次函数与反比例函数的解析式;(2)若点P是反比例函数图象上的一点,连接CP并延长,交x轴正半轴于点D,若PD:CP=1:2时,求△COP的面积;(3)在(2)的条件下,在y轴上是否存在点Q,使PQ+CQ的值最小,若存在请直接写出PQ+CQ的最小值,若不存在请说明理由.13【定义】斜率,表示一条直线相对于横轴的倾斜程度.当直线l的斜率存在时,对于一次函数y=kx+b(k≠0),k即为该函数图象(直线)的斜率.当直线过点(x1,y1)、(x2,y2)时,斜率k=y2-y1x2-x1,特别的,若两条直线l1⊥l2,则它们的斜率之积k1•k2=-1,反过来,若两条直线的斜率之积k1•k2=-1,则直线l1⊥l2【运用】请根据以上材料解答下列问题:(1)已知平面直角坐标系中,点A(1,3)、B(m,-5)、C(3,n)在斜率为2的同一条直线上,求m、n的值;(2)在(1)的条件下,点P为y轴上一个动点,当∠APC为直角时,求点P的坐标;(3)在平面直角坐标系中另有两点D(3,2)、E(-1,-6),连接DA并延长至点G,使DA=AG,连接GE交直线AB于点F,M为线段FA上的一个动点,求DM+55MF的最小值.14如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B的坐标为(23,4),一次函数y= -3x+b的图象与边OC、AB、x轴分别交于点D、E、F,∠DFO=30°,并且满足OD=BE,点M是线3段DF上的一个动点.(1)求b的值;(2)连接OM,若ΔODM的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)求OM+1MF的最小值.215如图1,一次函数y=34x-6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB,垂足为D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.16如图,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B0,2,与正比例函数y=32x的图象交于点C4,c.(1)求k和b的值.(2)如图1,点P是y轴上一个动点,当PA-PC最大时,求点P的坐标.(3)如图2,设动点D,E都在x轴上运动,且DE=2,分别连结BD,CE,当四边形BDEC的周长取最小值时直接写出点D和E的坐标.17在平面直角坐标系中,一次函数y=-23x+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线y=-23x+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.18已知一次函数y=4kx+5k+132k≠0,(1)无论k为何值,函数图像必过定点,求该点的坐标;(2)如图1,当k=-12时,该直线交x轴,y轴于A,B两点,直线l2:y=x+1交AB于点P,点Q是l2上一点,若SDABQ=6,求Q点的坐标;(3)如图2,在第2问的条件下,已知D点在该直线上,横坐标为1,C点在x轴负半轴,ÐABC=45°,动点M的坐标为(a,a),求CM+MD的最小值.19如图,在平面直角坐标系中,一次函数y=kx+b的图像经过点A(-2,0),B(0,-23)、过D(1,0)作平行于y轴的直线l;(1)求一次函数y=kx+b的表达式;PB+PD的最小值为.(2)若P为y轴上的一个动点,连接PD,则12(3)M(s,t)为直线l上的一个动点,若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,则求M,N点的坐标;+k(其中k·b≠0,且|k|≠|b|))为互助一次函数,例如:y=-2x+3和y=3x-2就是互助一次函数.如图1所示,一次函数y=kx+b和它的互助一次函数的图象l1,l2交于点P,l1,l2与x轴、y轴分别交于点A,B 和点C,D.(1)如图1所示,当k=-1,b=5时,直接写出点P的坐标是.(2)如图2所示,已知点M(-1,1.5),N(-2,0).试探究随着k,b值的变化,MP+NP的值是否发生变化,若不变,求出MP+NP的值;若变化,求出使MP+NP取最小值时点P的坐标.+k(其中k⋅b≠0,且|k|≠|b|)为互助一次函数,例如y=-23x+2和y=2x-23就是互助一次函数.如图,一次函数y=kx+b和它的互助一次函数的图象l1,l2交于P点,l1,l2,与x轴,y轴分别交于A,B点和C,D点.(1)如图(1),当k=-1,b=3时,请回答下列问题:①直接写出P点坐标;②Q是射线CP上一点(与C点不重合),其横坐标为m,求四边形OCQB的面积S与m之间的函数关系式,并求当△BCQ与△ACP面积相等时m的值;(2)如图(2),已知点M(-1,2),N(-2,0).试探究随着k,b值的变化,MP+NP的值是否发生变化?若不变,求出MP+NP的值;若变化,求出使MP+NP取最小值时的P点坐标.22如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD ⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为 “K型全等”.(不需要证明)【模型应用】若一次函数y=kx+4(k≠0)的图像与x轴、y轴分别交于A、B两点.(1)如图2,当k=-1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD的长;(2)如图3,当k=-43时,点M在第一象限内,若△ABM是等腰直角三角形,求点M的坐标;(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.。
期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。
《一次函数与不等式结合的最值问题》学习指导同学,你好,当你打开学习指导的时候,你可以根据我讲课的文字稿看看微课中的讲解是否有不懂的。
希望这份学习指导能够帮助到你更好的学习引入课题同学们:早上改作业,发现课本63页第15题大家普遍存在疑问。
大家能根据题目列出了不等式,得到x的取值范围(x≤50),这是本学期所学的不等式的内容;也把总金额的关系式写出来了,y=-1500x+450000。
这是上学期所学的一次函数的知识。
但是怎么结合起来找到工资总额的最小值呢?接下来我们就花一点时间,来研究一次函数与不等式结合时,产生的最值问题。
初探性质题目中的函数关系式y=-1500x+450000系数比较复杂,我们先看一个简单的一次函数y=2x-2的图像,请大家思考:①图像有哪些性质?②该函数有没有最大值?有没有最小值?为什么?我请一个B层的同学来回答一下这个问题。
好的,王思佳,你来说说这个图像有哪些性质?(1、它是一条直线,经过一三四象限 2、直线方向向上,y随x的增大而增大)很好。
那这个函数有没有最大值和最小值呢?(没有。
为什么?哦,因为它是一条直线,两端无限延伸,没有最高点也没有最低点)一次函数的知识掌握得很不错,请坐。
我们看到一个一次函数,在自变量是全体实数的时候,是不会有最大值和最小值的,因为图像是一条两端无限延伸的直线。
变式练习变式1那我现在做一点小小的变动。
一次函数y=2x-2,若自变量x≥3,那么此时图像发生了什么变化?函数有最值吗?是多少?请各个小组讨论一下。
来,请第二小组的同学告诉我,你们的结论是什么?有最小值,为什么?由于自变量取值范围从全体实数,变成了x≥3,就意味着图像由一条直线变成了一条射线,有最低点;当x=3的时候,函数出现了最小值是4.第二小组的同学讨论的结论正确,从图像直观的进行了分析。
(课件动画演示)非常好。
再来一个,如果自变量取值范围是x≤5呢?哦,大家反应很快。
图像是变成一条向下的射线,此时图像有最高点,函数有最大值。
八上数学复习专题之压轴题(一次函数)一、二条直线的交点问题:1.如图,平面直角坐标系中,函数3y x b =-+的图象与y 轴相交于点B ,与函数43y x =-的图象相交于点A ,且OB =5. (1)求点A 的坐标;(2)求函数3y x b =-+、43y x =-的图象与x 轴所围成的三角形的面积.2.如图,已知直线l 1经过点A (0,﹣1)与点P (2,3),另一条直线l 2经过点P ,且与y 轴交于点B (0,m ).(1)求直线l 1的解析式;(2)若△APB 的面积为3,求m 的值.3. 已知:如图,平面直角坐标系xOy 中,B (0,1),OB =OC =OA ,A 、C 分别在x 轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,求点D的坐标.4. 如图,直线l1的解析式为443y x=+,与x轴,y轴分别交于A,B;直线l2与x轴交于点C(2,0)与y轴交于点D3(0,)2,两直线交于点P.(1)求点A,B的坐标及直线l2的解析式;(2)求证:△AOB≌△APC;(3)若将直线l2向右平移m个单位,与x轴,y轴分别交于点C'、D',使得以点A、B、C'、D'为顶点的图形是轴对称图形,求m的值?二、与等腰三角形结合的问题1.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O →C →B 运动. (1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.2.如图,在平面直角坐标系中,直线l 1的解析式为y =﹣x ,直线l 2与l 1交于点A (a ,﹣a ),与y轴交于点B (0,b ),其中a ,b 满足2(2)0a ++=. (1)求直线l 2的解析式;(2)在平面直角坐标系中第二象限有一点P (m ,5),使得S △AOP =S △AOB ,请求出点P 的坐标; (3)已知平行于y 轴且位于y 轴左侧有一动直线,分别与l 1,l 2交于点M 、N ,且点M 在点N 的下方,点Q 为y 轴上一动点,且△MNQ 为等腰直角三角形,请直接写出满足条件的点Q 的坐标.3. 在平面直角坐标系中,直线l 1的函数关系式为2y x b =+,直线l 2过原点且与直线l 1交于点P (﹣1,﹣5).(1)试问(﹣1,﹣5)可以看作是怎样的二元一次方程组的解?(2)设直线l1与直线y x=交于点A,求△APO的面积;(3)在x轴上是否存在点Q,使得△AOQ是等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.4. 如图,直线l:122y x=-+与x轴,y轴分別交于点A,B,在y轴上有一点C(0,4),动点M从点A出发以毎秒1个単位长度的速度沿x轴向左运动,设运动的时间为t秒.(1)求点A的坐标;(2)请从A,B两题中任选一题作答.A.求△COM的面积S与时间t之间的函数表达式;B.当△ABM为等腰三角形时,求t的值.5.在平面直角坐标系中,直线y=x+6与x轴、y轴分别交于B、A两点,点C在x轴的正半轴,且OB=OC,点D为AC的中点.(1)求直线AC的解析式;(2)点P 从点B 出发,沿射线BD t 秒,△APD 的面积为S ,求S 与t 的函数关系,并直接写出自变量的取值范围;(3)在(2)的条件下,连接AP 、CP ,当△ACP 是以PC 为腰的等腰三角形时,求点P 的坐标.三、面积问题:1. 如图,在平面直角坐标系中,直线l 1:y =﹣x ﹣1分别与x 轴,y 轴交于点A ,B ,将直线l 1向上平移3个单位长度,得直线l 2.经过点A 的直线l 3与直线l 2交于第一象限的点C ,过点C 作x 轴的垂线,垂足为点D ,且AD =2CD (1)求直线l 3的解析式. (2)连接BC ,求△ABC 的面积.2. 如图,直线l 1:3y x =+分别与直线2:(0)l y kx b k =+≠、直线3111:(0)l y k x b k =+≠交于A 、B 两点,直线l 1交y 轴于点E ,直线l 2与x 轴和y 轴分别交于C 、D 两点,已知点A 的纵坐标为32,B 的横坐标为1,l 2∥l 3,OD =1,连BD .(1)求直线l 3的解析式; (2)求△ABD 的面积.3. 当m ,n 是正实数,且满足m n mn +=时,就称点(,)mP m n为“完美点”. (1)若点E 为完美点,且横坐标为2,则点E 的纵坐标为 ;若点F 为完美点,且横坐标为3,则点F 的纵坐标为 ;(2)完美点P 在直线 (填直线解析式)上;(3)如图,已知点A (0,5)与点M 都在直线5y x =-+上,点B ,C 是“完美点”,且点B 在直线AM 上.若MC =AM = △MBC 的面积.4. 如图(含备用图),在直角坐标系中,已知直线y =kx +3与x 轴相交于点A (2,0),与y 轴交于点B .(1)求k 的值及△AOB 的面积;(2)点C 在x 轴上,若△ABC 是以AB 为腰的等腰三角形,直接写出点C 的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.5. 图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD⊥AB于D,交y轴于点E.(1)求证:△COE≌△BOA;(2)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①判断△OMN的形状.并证明;②当△OCM和△OAN面积相等时,求点N的坐标.6.在直角坐标系中,点P(a,b)的“变换点”的坐标定义如下:当a≥b时,点P1的坐标为(a,﹣b);当a<b时,点P1的坐标为(b,﹣a).(1)直接写出点A(5,6)、B(3,2)、C(4,4)的变换点A1、B1、C1的坐标;(2)P(a,b)为直线y=﹣2x+6上的任一点,当a<b时,点P(a,b)的变换点在一条直线M上,求点M的函数解析式并写出自变量的取值范围;(3)直线y =﹣2x +6上所有点的变换点组成一个新的图形L ,直线y =kx +1与图形L 有两个公共点,求k 的取值范围.答案:一、 两直线交点问题:1. 解:(1)由OB =5可得B (0,﹣5),把(0,﹣5)代入3y x b =-+,可得b =﹣5, ∴函数关系式为y =﹣3x ﹣5,求两直线的交点坐标得:点A 的坐标为(﹣3,4); (2)设直线AB 与y 轴交于点C ,则点C 的坐标为5(,0)3-,CO =53,所围成的三角形即为△ACO ,过A 作AE ⊥x 轴于E ,由A (﹣3,4)可得AE =4,∴S △ACO =103. 2. 解:(1)设直线l 1的表达式为y =kx +b ,2,1k b ==-∴直线l 1的函数关系式为:y =2x ﹣1. (2)过P 作PH ⊥y 轴于H ,则PH =2,∵S △APB =3,∴AB =3,∵A (0,﹣1),∴B (0,2)或(0,﹣4),∴m =2或﹣4.3. 解:(1)∵OB =OC =OA ,∠AOB =90°,∴∠OAB =45°;∵B (0,1),∴A (1,0), 设直线AB 的解析式为y =kx +b . ∴直线AB 的解析式为y =﹣x +1;(2)∵S △COD =S △BDE ,1,1k b =-=∴S △COD +S 四边形AODE =S △BDE +S 四边形AODE ,即S △ACE =S △AOB , ∵点E 在线段AB 上,∴点E 在第一象限,且y E >0,点E 的纵坐标是12∴直线AB 的解析式得:=﹣x +1,设直线CE 的解析式是:y =mx +n ,∵C (﹣1,0),11(,)22E 代入得:解得:11,33m n ==, ∴直线CE 的解析式为1133y x =+,∴D 的坐标为1(0,)3.5. (1)解:当0x =时,4y =,∴点B 的坐标为(0,4); 当y =0时, 解得:x =﹣3,∴点A 的坐标为(﹣3,0). 设直线l 2的解析式为y kx b =+,将C (2,0)、D (0,)代入y kx b =+,得:33,42k b =-= ∴直线l 2的解析式为3342y x =-+. (2)证明:连接两直线解析式成方程组,解得点P 的坐标为612(,)55-. ∵A (﹣3,0),C (2,0),B (0,4), ∴AO =3,AC =5,AB =5,AP =3, ∴AO =AP ,AB =AC .在△AOB 和△APC 中,,,AO AP BAO CAP AB AC =∠=∠=, ∴△AOB ≌△APC (S A S ). (3)解:连接BC ′,如图所示.∵平移后直线C ′D ′的解析式为333442y x m =-++, ∴点C ′的坐标为(m +2,0),点D ′的坐标为33(0,)42m +.∵以点A 、B 、C '、D '为顶点的图形是轴对称图形,∴△ABC′≌△D′BC′,∴AB=D′B,AC′=D′C′.∵A(﹣3,0),B(0,4),∴D′B=3542m-,AC′=m+5,D′C′=5(2)4m+,∴3554255(2)4mm m⎧-=⎪⎪⎨⎪+=+⎪⎩解得:m=10.∴当以点A、B、C'、D'为顶点的图形是轴对称图形时,m的值为10.二、与等腰三角形结合问题1. 解:(1)∵点A的坐标为(0,6),∴设直线AB的解析式为y=kx+6,∵点C(2,4)在直线AB上,∴2k+6=4,∴k=﹣1,∴直线AB的解析式为y=﹣x+6;(2)由(1)知,直线AB的解析式为y=﹣x+6,令y=0,∴﹣x+6=0,∴x=6,∴B(6,0),∴S△OBC=12,∵△OPB的面积是△OBC的面积的14,∴S△OPB=3,设P的纵坐标为m,∴S△OPB=3m=3,∴m=1,∵C(2,4),∴直线OC的解析式为y=2x,当点P在OC上时,12x=,∴1(,1)2P,当点P在BC上时,x=6﹣1=5,∴P(5,1),即:点1(,1)2P或(5,1);(3)∵△OBP是直角三角形,∴∠OPB=90°,当点P在OC上时,由(2)知,直线OC的解析式为y=2x①,∴直线BP的解析式的比例系数为12 -,∵B(6,0),∴直线BP的解析式为132y x=-+②,联立①②,可求得612 (,) 55 P,当点P在BC上时,由(1)知,直线AB的解析式为y=﹣x+6③,∴直线OP的解析式为y=x④,联立③④解得,可求得P(3,3),即:点P的坐标为612(,)55P或(3,3).2. 解:(1)由条件得a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(﹣2,2),点B的坐标为(0,3).设直线l2的解析式为y=kx+c(k≠0),将A(﹣2,2)、B(0,3)代入y=kx+c,得:1,32k c==∴直线l2的解析式为132y x=+.(2)∵S△AOP=S△AOB,∴点P到AO的距离与点B到AO的距离相等,且点P位于l1两侧.①当点P在l1的右侧时,设点P为P1,则P1B∥l1,∴直线P1B的解析式为:y=﹣x+3,当y=5时,有﹣x+3=5,解得:x=﹣2,∴点P1的坐标为(﹣2,5);②当点P在l1的左侧时,设点P为P2,点P2的坐标为(﹣8,5).综上所述:点P的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x=t,由题可得﹣2<t<0,则点M的坐标为(t,﹣t),点N的坐标为1(,3)2t t+,∴332MN t=+.①当∠NMQ=90°时,有MN=MQ,65t=-,∴点M的坐标为66(,)55-.∵MQ∥x轴,∴点Q的坐标为6 (0,)5;②当∠MNQ=90°时,有MN=NQ,即t+3=﹣t,t=﹣,∴点Q的坐标为12 (0,)5;③当∠MQN=90°时,点Q的坐标为12 (0,)7.综上所述:点Q的坐标为6(0,)5或12(0,)5或12(0,)7.3. 解:(1)∵点P(﹣1,﹣5)在直线l1上,∴﹣2+b=﹣5,∴b=﹣3∴直线l1的解析式为y=2x﹣3,设直线l2的解析式为y=kx,则有﹣k=﹣5,∴k=5,∴直线l2的解析式为y=5x,∴(﹣1,﹣5)可以看成二元一次方程组235y xy x=-⎧⎨=⎩的解.(2)A(3,3),∵点P(﹣1,5)在直线y=2x﹣3上,直线P A交y轴于C(0,﹣3),∴S△AOP=S△POC+S△AOC=6.(3)∵A(3,3),∴OA=①当OA=OQ时,可得Q1(﹣0),Q2(,0);②当QA =QO 时,Q 3(3,0);② 当AO =AQ 时,Q 4(6,0),综上所述,满足条件的点Q 坐标为(﹣0)或(3,0)或(,0)或(6,0).4. 解:(1)对于直线AB :122y x =-+,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)A 、∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =×4×(4﹣t )=8﹣2t ;当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =×4×(t ﹣4)=2t ﹣8;B 、△ABM 是等腰三角形,有三种情形:①当BM =AM 时,设BM =AM =x ,则OM =4﹣x ,在Rt △OBM 中,∵OB 2+OM 2=BM 2,∴2222(4)x x +-=,∴ 2.5x =,∴AM =2.5,∴t=2.5时,△ABM 是等腰三角形.③ 当AM ′=AB =t =△ABM 是等腰三角形.③当BM ″=BA 时,∵OB ⊥AM ″,∴OM ″=OA =4,∴AM ″=8,∴t=8时,△ABM 是等腰三角形.综上所述,满足条件的t 的值为52或8s .5. 解:(1)令y =x +6中x =0,则y =6,∴A (0,6);令y =x +6中y =0,则x =﹣6,∴B (﹣6,0).∵点C 在x 轴的正半轴,且OB =OC ,∴C (6,0).设直线AC 的解析式为y =kx +b ,将A (0,6)、C (6,0)代入y =kx +b 中,得1,6k b =-=∴直线AC 的解析式为6y x =-+;(2)∵点D 为AC 的中点,∴点D 的坐标为(3,3),设BD 的直线解析式为:y =mx +n ,把B (﹣6,0),D (3,3)代入解析式可得:1,23m n ==, 所以直线BD 的解析式为:123y x =+①, ∴G (0,2),∵A (0,6),∴AG =4.∵直线AC 的解析式为6y x =-+②,联立①②解得,x =3,y =3,∴D (3,3),设BP 时,P 点坐标为(﹣6+3t ,t ),当点P 在线段BD 上时,△APD 的面积S=12AG ×(x D ﹣x P )=18﹣6t (0<t <3); 当点P 在BD 的延长线上时, △APD 的面积S=12×4×(﹣6+3t ﹣3)=6t ﹣18(t >3) (3)要使△APC 是等腰三角形,且以PC 为腰,如备用图1,有两种情况:①AP =PC ,∴点P 是线段AC 的垂直平分线上,∵点D 是AC 的中点,∴点P 和点D 重合,不符合题意,②AC =PC =,可得:222(63t 6)t +-++=, 可得:126,65t t ==, 所以点P 的坐标为126(,)55-,(12,6).三、面积问题1. 解:(1)由直线l 1:y =﹣x ﹣1可知:A (﹣1,0),B (0,﹣1),将直线l 1向上平移3个单位长度,得直线l 2:y =﹣x +2,设C (m ,n ),∵AD =2CD ,∴1+m =2n ,∵点C 在直线l 2:y =﹣x +2上,∴n =﹣m +2,∴C (1,1),设直线l 3的解析式为y =kx +b ,把A (﹣1,0)和C (1,1)代入得12k b ==, ∴直线l 3的解析式为1122y x =+. (2)令x =0,则y =12,S △ABC =12. 2. 解:(1)在y =x +3中,令32y =,则32x =-,∴33(,)22A -, ∵OD =1,∴D (0,﹣1),把点A ,D 的坐标代入l 2:y =kx +b ,可得5,13k b =-=-∴25:13l y x =--, 在y =x +3中,令x =1,则y =4,∴B (1,4),∵l 2∥l 3,∴153k =-,∴直线l 3的解析式为51733y x =-+; (2)在y =x +3中,令x =0,则y =3,∴E (0,3),∴DE =3+1=4,∴S △ABD =DE (|x A |+|x B |)=5.3.解:(1)把m =2代入m +n =mn 得:2+n =2n ,解得:n =2,即1m n =, 所以E 的纵坐标为1;把m =3代入m +n =mn 得:3+n =3n ,解得32n =,即2m n=,所以F 的纵坐标为2; (2)设直线AB 的解析式为y =kx +b , 从图象可知:与x 轴的交点坐标为(1,0)A (0,5),得:k =﹣1,b =5,即直线AB 的解析式是y =﹣x +5,设直线BC 的解析式为y =ax +c ,从图象可知:与y 轴的交点坐标为(0,﹣1),与x 轴的交点坐标为(1,0),得:a =1,c =﹣1, 即直线BC 的解析式是y =x ﹣1,∵P (,)m m n,m +n =mn 且m ,n 是正实数, ∴除以n 得:1m m n +=∴P (m ,m ﹣1)即“完美点”P 在直线y =x ﹣1上;故答案为:y =x ﹣1;(3)∵直线AB 的解析式为:y =﹣x +5,直线BC 的解析式为y =x ﹣1,∴B (3,2),∵一、三象限的角平分线y =x 垂直于二、四象限的角平分线y =﹣x ,而直线y =x ﹣1与直线y =x 平行,直线y =﹣x +5与直线y =﹣x 平行,∴直线AM 与直线y =x ﹣1垂直,∵点B 是直线y =x ﹣1与直线AM 的交点,∴垂足是点B ,∵点C 是“完美点”,∴点C 在直线y =x ﹣1上,∴△MBC 是直角三角形,∵B (3,2),A (0,5),∴AB =AM =MB =∴BC =1,∴S △MBC =12BC ×BM .4. 解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得32k=-,∴332y x=-+.当x=0时,y=3.∴B(0,3),OB=3.∴A(2,0),OA=2,∴S△AOB=12OA•OB=3.(2)如图2,①当AB=BC时,点C与点A(2,0)关于y轴对称,故C(﹣2,0)符合题意;②当AB=AC时,由A(2,0),B(0,3)得到AB AC=AC C′,0)、C″2,0).综上所述,符合条件的点C的坐标是(﹣2,0,02,0);(3)∵M(3,0),∴OM=3,∴AM=3﹣2=1.由(1)知,S△AOB=3,∴S△PBM=S△AOB=3;①当点P在x轴下方时,S△PBM=S△PBM+S△APM=3,∴|y P|=3,∵点P在x轴下方,∴y P=﹣3.当y=﹣3时,代入332y x=-+得x=4.∴P(4,﹣3);②当点P在x轴上方时,S△PBM=S△PBM﹣S△APM=3,∴|y P|=9,∵点P在x轴上方,∴y P=3.当y=9时,代入y=﹣x+3得,9=﹣x+3,解得x=﹣4.∴P(﹣4,9).5. 解:(1)把x=0代入443y x=-+,解得:y=4,∴OB=4,把y=0代入443y x=-+,解得:x=3,∴OA=3,∵C(﹣4,0),∴OC=4,∴OB=OC,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵∠ACD+∠OEC=90°,∴∠CAD=∠OEC,∴△COE≌△BOA(AA S);(2)①∵ON⊥OM,∴∠MON=90°,∴∠COM+∠AON=90°,∵∠AON+∠BON=90°,∴∠COM=∠BON,∵△COE≌△BOA,∴∠OCM=∠OBN,∴△COM≌△BON(A S A),∴OM=ON,∠COM=∠BON,∵∠COM+∠MOE=90°,∴∠BON+∠MOE=90°,即∠MON=90°,∴△MON是等腰直角三角形;②∵△COM≌△BON,△OCM与△OAN面积相等,∴△BON与△OAN面积相等,即△OAN面积是△AOB面积的一半,得y N=2,解得:x=1.5,∴点N的坐标为(1.5,2)6. 解:(1)A(5,6)的变换点坐标是(6,﹣5),B(3,2)的变换点坐标是(3,﹣2),C(4,4)的变换点坐标是(4,﹣4);(2)当a=b时,a=b=2,∵(2,2)的变换点为(2,﹣2),∵当a<b时,点P(a,b)的变换点坐标为(b,﹣a),∴x<2,∵(0,6)的变换点为(6,0),∴点P(a,b)的变换点经过(2,﹣2)和(6,0),设点M的函数解析式为y=kx+m,1,32k b==-∴13(2)2y x x=-<.(3)由题意,新的图形L的函数解析式为13(2)226(2)x xyx x⎧-<⎪=⎨⎪-≥⎩新图形L的拐点坐标为(2,﹣2),画出图形如图所示.当y=kx+1过点(2,﹣2)时,有﹣2=2k+1,解得:32k=-;当y=kx+1与y=2x﹣6平行时,k=2;当y=kx+1与132y x=-平行时,12k=.结合图形可知:直线y=kx+1与图形L有且只有两个公共点时,322k-<<且12k≠.。
1.(本题10分)某市自来水公司为了鼓励市民节约用水,于2014年4月开始采用以用户为单位按月分段收费办法收取水费,新按月分段收费标准如下:标准一:每月用水不超过20吨(包括20吨)的水量,每吨收费2.45元;标准二:每月用水超过20吨但不超过30吨的水量,按每吨a元收费;标准三:超过30吨的部分,按每吨(a+1.62)元收费。
(说明:a>2.45).(1)居民甲4月份用水25吨,交水费65.4元,求a的值;(2)若居民甲2014年4月以后,每月用水x(吨),应交水费y(元),求y与x之间的函数关系式,并注明自变量x的取值范围;(3)随着夏天的到来,各家的用水量在不但增加.为了节省开支,居民甲计划自家6月份的水费不能超过家庭月收入的2%(居民甲家的月收入为6540元),则居民甲家六月份最多能用水多少吨?2.(12分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元;(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>10)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.3.(本小题满分8分)某技工培训中心有钳工20名、车工30名. 现将这50名技工中的设派往A地x名钳工时,这50名技工的月工资总额为y元.(1)派往B地___________名钳工,派往B地___________名车工;(2)求y关于x的函数关系式;(3)若A地钳工的月工资总额不小于B地钳工的月工资总额,派往A地多少名钳工,可使这50名技工的月工资总额最高?(1)一个月内某用户在本地通话时间为x 分钟,请你用含有x 的式子分别写出两种计费方式下该用户应该支付的费用;(2)若某用户一个月内本地通话时间为5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.5.(本题满分10分)某剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,剧院制定了两种优惠方案,方案一:购买一张成人票赠送一张学生票;方案二:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),分别求出方案一、方案二的付款总金额1y 、2y (元)与x 的函数表达式;(2)学生人数在什么范围内,两种方案费用一样?人数在什么范围内,选方案一较划算?人数在什么范围内,选方案二较划算?6.(本题满分12分).某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)7.(8分)学校准备添置一批计算机.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要计算机x 台,方案1与方案2的费用分别为y 1、y 2元.(1)分别写出y 1、y 2的函数解析式;(2)当学校添置多少台计算机时,两种方案的费用相同?(3)若学校需要添置计算机50台,那么采用哪一种方案较省钱?说说你的理由参考答案1.(1)3.28;(2)⎪⎩⎪⎨⎧--=>30)(2.659.4)30≤<20(6.1628.3)20≤≤0(45.2x x x x x x y ;(3)40吨 .【解析】试题分析:(1)由前20吨水的费用+超过20吨的水费建立方程求出求解即可;(2)根据分段函数求解的方法当0≤x ≤20时,当20<x ≤30时,当x >30时分别由总费用=单价×数量就可以求出结论;(3)先求出前30吨水费,再求出用于缴水费的费用,确定甲用水量的范围,再建立不等式求出其解即可.试题解析:解:(1)由题意得,20×2.45+5a =65.4, 解之得,a =3.28,答:a 的值为3.28.(2)由题意得:当0≤x ≤20时,x y 45.2=;当20<x ≤30时,6.1628.3)20(28.345.220-=-+⨯=x x y ;当x >30时,)62.128.3()30(28.31045.220+⨯-+⨯+⨯=x y =2.659.4-x ;即⎪⎩⎪⎨⎧--=>30)(2.659.4)30≤<20(6.1628.3)20≤≤0(45.2x x x x x x y ; (3)6540×2%=130.8 ,∵20×2.45=49;49+10×3.28=81.8,而49﹤81.8﹤130.8,∴居民甲家6月份用水超过30吨,设他家6月用水x 吨,得,x 9.4-65.2≤130.8, 解得,x ≤40,答:居民甲家计划6月份最多用水40吨 .考点:一次函数的应用;一元一次方程的应用;一元一次不等式的应用.2.(1)14元 15元 (2)y 12x 30=+(3)当10x 15<<时买笔记本,当x 15=时买笔记本或者钢笔,当x 15>时买钢笔。