【初三数学】东莞市九年级数学上期中考试测试题及答案
- 格式:docx
- 大小:633.27 KB
- 文档页数:35
广东省东莞市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)方程(x-3)2=8的根为()A . x=3+2B . x=3-2C . x1=3+2, x2=3-2D . x1=3+2, x2=3-22. (2分) (2018九上·信阳月考) 下列图形中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)将抛物线y=2x2﹣1向右平移1个单位后,再向上平移2个单位,得到的抛物线的顶点坐标是()A . (2,1)B . (1,2)C . (1,﹣1)D . (1,1)4. (2分)(2017·微山模拟) 小强喜欢玩飞镖游戏,一天他用平行四边形做了一个飞镖盘,如图所示,▱ABCD 中,过对角线BD上任一点F分别作FE∥AB,FG∥BC分别交AD,CD于点E,G,连接EG,则小强随机掷一次飞镖,飞镖落在阴影部分的概率是()A .B .C .D .5. (2分) (2019九上·慈溪月考) ⊙O的半径为2,则它的内接正六边形的边长为()A . 2B . 2C .D . 26. (2分) (2018九上·建瓯期末) 已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A . 4B . -4C . 1D . -17. (2分)小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A .B .C .D .8. (2分)(2019·上海模拟) 某商店9月份的销售额为a万元,在10月份与11月份这两个月份中,此商店的销售额平均每月增长x%,那么下列11月份此商店的销售额正确是()A . a(1 + x%)B . (1 + x%)2C . a(x%)2D . a(1 + x%)29. (2分)下列说法正确的是()A . 相等的圆心角所对的弧相等B . 在同圆中,等弧所对的圆心角相等C . 相等的弦所对的圆心到弦的距离相等D . 圆心到弦的距离相等,则弦相等10. (2分) (2019九上·香坊期末) 如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)11. (1分) (2019八下·余姚月考) 我们知道若关于x的一元二次方程ax2+bx+c=0(a≠0)有一根是1,则a+b+c=0,那么如果9a+c=3b,则方程ax2+bx+c=0有一根为________.12. (1分)某林业部门要考察某种幼树在一定条件下的移植成活率,在同样的条件下对这种幼树进行大量移植,并统计成活情况,记录如下(其中频率结果保留小数点后三位)移植总数(n)10502704007501500350070009000成活数(m)8472353696621335320363358118成活的频率0.8000.9400.8700.9230.8830.8900.9150.9050.902由此可以估计幼树移植成活的概率为________13. (1分)已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数的图象上,则y1 , y2 ,y3的大小关系是________.14. (1分) (2017八下·钦州期末) 如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO 向右平移得到△DCE,则△ABO向右平移过程扫过的面积是________.三、解答题 (共11题;共80分)15. (5分)解一元二次方程(1)(3x+2)2=24(2) 3x2﹣1=4x(3)(2x+1)2=3(2x+1)(4) x2+4x+2=0(配方法)16. (5分) (2017八下·黑龙江期末) 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.17. (5分)(2018·白云模拟) 如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;要求保留作图痕迹,不写作法(2)若的中点C到弦AB的距离为,求所在圆的半径.18. (5分)+|﹣2|﹣(﹣)﹣1 .19. (5分)如图1,在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连接AB。
2022-2023学年广东省东莞市九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列函数中,是二次函数的是( )A. y=−2−3x B. y=−(x−1)2+x2x2C. y=11x2+29xD. y=ax2+bx+c2. 在抛物线y=x2−4x−4上的一个点是( )A. (4,4)B. (3,−1)C. (−2,−8)D. (1,−7)3. 下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线4. 关于抛物线y=−4(x+6)2−5的图象,下列结论正确的是( )A. 对称轴是直线x=6B. 当x<−6时,y随x的增大而增大C. 与y轴的交点坐标是(0,−5)D. 顶点坐标是(−6,5)5. 如图是抛物线y=ax2+bx+c的示意图,则a的值可以是( )A. 1B. 0C. −1D. −26. 在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度所得抛物线对应的函数表达式为( )A. y=(x−2)2+1B. y=(x+2)2+1C. y=(x+2)2−1D. y=(x−2)2−17. 已知点(1,y1),(2,y2)都在函数y=−x2的图象上,则( )A. y1<y2B. y1>y2C. y1=y2D. y1,y2大小不确定8. 二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是( )A. a>0,b>0,c>0B. a>0,b<0,c<0C. a<0,b>0,c<0D. a<0,b<0,c<09. 参加一次聚会的每两人都握了一次手,所有人共握手10次,参加聚会的人数为是( )A. 4人B. 5人C. 6人D. 7人10. 在同一平面直角坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是( )A. B. C. D.二、填空题(本大题共7小题,共28.0分)11. 二次函数y=x2+4x+1的图象的对称轴是______.12. 抛物线y=3(x−1)2+8的顶点坐标为______.13. 已知关于x的一元二次方程x2−3x=15两实数根为x1,x2,则x1+x2=______.14. 关于x的一元二次方程(k+2)x2+6x+k2+k−2=0有一个根是0,则k的值是______.15. 如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′//AB,则∠BAC的度数为______.16. 如图,一元二次方程ax2+bx+c=0的解为______.17. 二次函数y=x2−x−2的图象如图所示,则函数值y<0时,x的取值范围是______.三、计算题(本大题共1小题,共6.0分)18. 解方程:x2+4x−5=0.四、解答题(本大题共7小题,共56.0分。
新人教版数学九年级上册期中考试一试题及答案一、仔细选一选。
(每题 3 分,共 42 分)1.察看以下图案,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. 方程3x 2﹣ 1=0 的一次项系数是()A .﹣ 1B .0C .3D.13. 方程x ( x ﹣1)=0 的根是()A .x=0B .x=1C .x 1=0, x 2=1D .x 1=0, x 2 =﹣ 14. 在平面直角坐标系中,点 A (﹣ 3,1)与点 B 对于原点对称,则点 B 的坐标为 () A .(﹣ 3,1)B .(﹣ 3,﹣ 1)C .(3,1)D .(3,﹣ 1)5. 一元二次方程x 2 ﹣2x ﹣ 7=0 用配方法可变形为()A .(x+1)2=8B .(x+2)2=11C .(x ﹣1)2=8D .(x ﹣2)2=116. 以下方程中,是对于 x 的一元二次方程的是 ( ) 。
A . 2x2y 1 0B .12x1 C . 1x 21 0 D . y 22 y 1x 227.设 x 1,x 2 是一元二次方程 x 2﹣2x ﹣ 3=0 的两根,则 =()A .﹣ 2B .2C .3D .﹣ 38.将抛物线 y=﹣ 2x 2 向左平移 3 个单位,再向下平移 4 个单位,所得抛物线为 ()A .y=﹣2(x ﹣3)2﹣4B . y=﹣2(x+3) 2﹣4C . y=﹣2(x ﹣3)2 +4D .y=﹣2(x+3)2+49.若抛物线 y=x 2+2x+c 与 y 轴交点为(0,﹣3),则以下说法不正确的选项是 ()A .抛物线口向上B .当 x >﹣ 1 时, y 随 x 的增大而减小C .对称轴为 x=﹣1 D.c 的值为﹣ 310.设 A (﹣ 2,y 1),B (1,y 2),C ( 2,y 3)是抛物线 y=﹣(x+1)2+2 上的三点,则 y 1,y 2, y 3 的大小关系为()A .y 1> y 2 >y 3B .y 1>y 3> y 2C .y 3>y 2>y 1D .y 3>y 1> y 211.三角形两边的长是 3 和 4,第三边的长是方程 x 2﹣12x+35=0 的根,则该三角形的周长为()A.14B.12C.12或14D.以上都不对12.△ ABC是等边三角形,点 P 在△ ABC内,PA=2,将△ PAB绕点 A 逆时针旋转得到△ P1AC,则 P1P 的长等于()A.2B.C.D.113.在一次会议中,每两人都握了一次手,共握手21 次,设有 x 人参加会议,则可列方程为()A.x(x+1) =21B. x( x﹣ 1) =21 C. D .14.已知二次函数 y=ax2+bx+c 中,函数 y 与自变量 x 的部分对应值以下表:x﹣2﹣1012y116323则当 y<6 时, x 的取值范围是()A.﹣ 3< x< 3 B .﹣ 1< x< 3C.x<﹣ 1 或 x>3 D . x> 3二、专心填一填(每题 4 分,共 16 分)15.把方程 2x2﹣1=5x 化为一般形式是16.对于 x 的一元二次方程 kx 2﹣x+1=0 有实数根,则 k 的取值范围是.17.以下图,将一个含 30°角的直角三角板 ABC绕点 A 旋转,使得点 B,A,C′在同一条直线上,则三角板ABC旋转的角度是.18.( 3 分)抛物线 y=+5 的极点坐标是三、耐心解一解(本大题满分62 分)19.(每题 5 分,共 10 分)(1) 2x25x 3 0(2)( x 1)23620.(9 分) 如图,△ COD是△ AOB绕点 O顺时针方向旋转 40°后所得的图形,点C恰幸亏 AB上,∠ AOD=90°,求∠ B 的度数.21.(9 分) 如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有二道篱笆的长方形花园,设花园的宽AB为 x 米,面积为 S 平方米.( 1)求 S 与 x 的函数关系式及自变量的取值范围;( 2)当 x 取何值时所围成的花园面积最大,最大值是多少?22.(10 分) 我县某村 2015 年的人均收入为 10000 元,2017 年人均收入为 12100 元,若 2015 年到 2017 年人均收入的年均匀增添率同样.(1)求人均收入的年均匀增添率;(2) 2016 年的人均收入是多少元?2223.(12 分 ) 已知二次函数 y=x ﹣ 2mx+m﹣ 3( m是常数).( 1)求证:无论 m为什么值,该函数的图象与x 轴都有两个交点.( 2)当 m 的值改变时,该函数的图象与 x 轴两个交点之间的距离能否改变?若不变,恳求出距离;若改变,请说明原因. 分 如图直线 y 2x 4 与 x 轴、 y 轴订交于点 A 、B ,抛物线经过 A 、B 24 (12 )两点,点 C (, )在抛物线上,抛物线的极点为点 D ,直线 l 垂直于 x 轴.- 1 0 ( 1)求抛物线的分析式;( 2)在抛物线的对称轴上能否存在点 P ,使△ PBD 是以 BD 为腰的等腰三角形?假如存在,直接写出 P 点的坐标;假如不存在,请说明原因;yDBC OA xl3421234567891011121314C B CD C C A B B A B A D B 41615.2x 2 5x -1=0 16. k ≤k≠017. 150 ° 18. 1 56219.(510 )(1)a2,b5,c3b24ac252449 x b b24ac( 5)4922a22=574 4x1573, x25715 442(2)x162 x1 6 x164x15, x275 20.COD AOBCO=AO40°AOC= BOD=40°OAC=140÷2=70°BOC= AOD AOC BOD=10°AOB= AOC+ BOC=50°AOBB=180° OAC AOB=180° 70° 50°=60° 8B60° 121. 1 AB=x BC= 244x∴ S=AB?BC=x (24﹣4x )=﹣4x 2+24x ( 0< x < 6); 5 分( 2) S=﹣4x 2+24x=﹣4(x ﹣3)2 +36,∵ 0< x < 6,∴当 x=3 时, S 有最大值为 36 平方米;4 分22. 解:(1)设人均收入的年均匀增添率为 x ,依题意,得10000(1+x )2=12100,解得: x 1=0.1=10%, x 2 =﹣ 2.1 (不合题意,舍去),5 分答:人均收入的年均匀增添率为10%; 6 分( 2) 2016 年的人均收入为: 10000( 1+x )=10000(1+0.1 ) =11000(元).答:该购物网站 8 月份到 10 月份销售额的月均匀增添率为10%. 10 分2223. (1)证明: y=x ﹣ 2mx+m ﹣ 3,∵ a=1,b=﹣ 2m ,c=m新人教版数学九年级上册期中考试一试题及答案一、仔细选一选。
2020-2021 学年第一学期九年级阶段性测评一、选择题(每小题2 分,共20 分)数学试卷1. 若a=c= 2(b +d≠0) ,则a +c是()b d b +dA. 1B. 2C.12D. 4 【考点】比例的性质【难度星级】★【答案】B【解析】a = 2b, c = 2d ,∴a +c=2b + 2d= 2 .b +d b +d2.将方程(x +1)(2x - 3) = 1 化成“ax2 +bx +c = 0 ”的形式,当a=2 时,则b,c 的值分别为()A. b =-1,c =-3 C. b =-1,c =-4B. b =-5,c =-3 D. b = 5,c =-4【考点】一元二次方程的一般式【难度星级】★【答案】C【解析】化为一般式得2x2 -x - 4 = 0 ,所以b =-1, c =-4 .3.矩形、菱形、正方形的对角线都具有的性质是()A.对角线相等B. 对角线相互平分C. 对角线相互垂直D. 对角线互相垂直平分【考点】特殊平行四边形对角线性质【难度星级】★【答案】B【解析】矩形,菱形,正方形均为平行四边形,所以对角线互相平分.4.如图,一组互相平行的直线a、b、c 分别与直线l1,l2 交于A、B、C、D、E、F,直线l1,l2 交于点O,则下列各式不正确的是()A.AB=DEBC EFB.AB=DEAC DFC.EF=DEBC ABD.OE=EBEF FC【考点】平行线分线段成比例定理【难度星级】★★【答案】D【解析】D 选项中OE=EB. OF FC5.一元二次方程x2 + 6x + 9 = 0 的根的情况是()A.有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根【考点】根的判别式【难度星级】★【答案】A【解析】∆= 62 - 4 ⨯1⨯ 9 = 0 ,所以有两个相等实根.6.小明要用如图两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时所指的颜色恰好配成紫色的概率为()A.1 6B.1 4C.1 3D.1 2【考点】概率统计【难度星级】★★【答案】C【解析】由列表或树状图可知,总共有6 种等可能的情况,其中能配成紫色(即一蓝一红)的情况有2种,所以P =2=1.6 37.配方法解方程x2 - 8x + 5 = 0 ,将其化为(x +a)2 =b 的形式,正确的是()A. (x + 4)2 = 11B. (x + 4)2 = 21C. (x - 8)2 =11D. (x - 4)2 = 11【考点】配方法【难度星级】★【答案】D【解析】x2- 8x + 5 = 0 ⇒x2- 8x +16 = 11 ⇒(x - 4)2= 11.8.如图,△ABC,点P 是AB 边上的一点,过P 作PD∥BC,PE∥AC,分别交AC、BC 于D、E,连接CP,若四边形CDPE 是菱形,则线段CP 应满足的条件是()A.CP 平分∠ACBB.CP⊥ABC.CP 是AB 边上的中线D.CP=AP【考点】菱形的判定【难度星级】★★【答案】A【解析】由题意知,四边形CDPE 为平行四边形;当CP 平分∠ACB 时,∠DCP =∠ECP =∠DPC ,所以DC =DP ;所以四边形CDPE 为菱形.9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2 米,宽为1 米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程()A. 90% ⨯ (2 +x)(1 +x) = 2 ⨯1 C. 90% ⨯ (2 - 2x)(1 - 2x) = 2 ⨯1 【考点】一元二次方程的面积问题【难度星级】★★【答案】B B. 90% ⨯ (2 + 2x)(1 + 2x) = 2 ⨯1 D. (2 + 2x)(1 + 2x) = 2 ⨯1⨯90%【解析】读懂题意,图案加上四周的白边才构成了宣传版面.10.如图,在矩形ABCD 内有一点F,FB 与FC 分别平分∠ABC 和∠BCD,点E 为矩形ABCD 外一点,连接BE、CE,现添加以下条件:①BE∥CF,CE∥BF;②BE=CE,BC=BF;③BE∥CF,CE⊥BE;④BE=CE,CE∥BF。
人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有①.【分析】根据a的值可以判定开口方向和开口大小,利用顶点式直接找出对称轴和顶点坐标,利用对称轴和开口方向确定y随着x的增大而增大对应x的取值范围.【解答】解:①因为a=3>0,它们的图象都是开口向上,大小是相同的,故此选项正确;②y=3x2+1对称轴是y轴,顶点坐标是(0,1),y=3(x﹣1)2的对称轴是x=1,顶点坐标是(1,0),故此选项错误;③二次函数y=3x2+1当x>0时,y随着x的增大而增大;y=3(x﹣1)2当x>1时,y随着x的增大而增大,故此选项错误;④它们与x轴都有一个交点,故此选项错误;综上所知,正确的有①.故答案是:①.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是x =2 .【分析】因为点(﹣2,0),(6,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.【解答】解:∵抛物线与x轴的交点为(﹣2,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==2,即x=2.故答案是:x=2.15.函数y=x2﹣2x+2的图象顶点坐标是(1,1).【分析】根据二次函数解析式,进行配方得出顶点式形式,即可得出顶点坐标.【解答】解:y=x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,∵抛物线开口向上,当x=1时,y最小=1,∴顶点坐标是(1,1).故答案为:(1,1).16.点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).三.解答题(共9小题)17.解方程:x2﹣6x+5=0(配方法)【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.【分析】直接利用交点式写出抛物线的解析式.【解答】解:抛物线的解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?【分析】设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据共要比赛28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得:=21,整理得:x2﹣x﹣42=0,解得:x1=7,x2=﹣6(不合题意,舍去).答:共有7个队参加足球联赛.20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.【分析】(1)设这两年该企业投入科研经费的年平均增长率为x,根据2016年及2018年投入科研经费,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入科研经费=2018年投入科研经费×(1+增长率),即可求出结论.【解答】解:(1)设这两年该企业投入科研经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2.答:这两年该企业投入科研经费的年平均增长率为20%.(2)7200×(1+20%)=8640(万元).答:2019年该企业投入科研经费8640万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?【分析】(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式,求出其解即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣4)2+2.6,由题意,得1=a(0﹣4)2+2.6,解得:a=﹣0.1.故y=﹣0.1(x﹣4)2+2.6.答:抛物线的解析式为:y=﹣0.1(x﹣4)2+2.6;(2)由题意,得当y=0时,﹣0.1(x﹣4)2+2.6=0,解得:x1=+4,x2=﹣+4<0(舍去),故x=+4.答:这个同学推出的铅球有(+4)米远.22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.【分析】(1)计算判别式的中得到△=24,然后根据判别式的意义得到结论;(2)把x=2代入方程k2+4k=2,再把2k2+8k+2018表示为2(k2+4k)+2018,然后利用整体代入的方法计算.【解答】(1)证明:△=(2k)2﹣4(k2﹣6)=24>0,所以方程有两个不相等的实数根;(2)把x=2代入方程得4+4k+k2﹣6=0,所以k2+4k=2,所以2k2+8k+2018=2(k2+4k)+2018=2×2+2018=2022.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为6000 元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(40﹣x)元,平均每月可售出[(40﹣x)×200+600] 个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.【分析】(1)根据总盈利=单件获利乘以销量列出代数式;(2)根据“当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个”列出代数式(3)设每个台灯的售价为x元.根据每个台灯的利润×销售数量=总利润列出方程并解答;【解答】解:(1)依题意得:未降价之前,该店每月台灯总盈利为600×(40﹣30)=6000元.故答案是:6000.(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利(x﹣30)元,平均每月可售出[(40﹣x)×200+600]个故答案为:(x﹣30),[(40﹣x)×200+600].(2)设每个台灯的售价为x元.根据题意,得(x﹣30)[(40﹣x)×200+600]=8400,解得x1=36(舍),x2=37.当x=36时,(40﹣36)×200+600=1400>1210;当x=37时,(40﹣37)×200+600=1200<1210;答:每个台灯的售价为37元.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.【分析】(1)根据运动时间求出PA,BQ,利用分割法求△DPQ的面积即可.(2)分别求出表示出DP2,PQ2,DQ2,进而得到PQ2+DQ2=DP2,得出答案;(3)假设运动开始后第x秒时,满足条件,则有QP=QD,表示出QP2,QD2,列出等式,构建方程方程,求出方程的解,根据时间大于0秒小于6秒,即可解答.【解答】解:(1)经过1秒时,AP=1,BQ=2,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,AB=CD=6cm,BC=AD=12cm,∴PB=6﹣1=5(cm),CQ=BC﹣BQ=12﹣2=10(cm),∴S△DPQ=S矩形ABCD﹣S△ADP﹣S△PBQ﹣S△DCQ=72﹣×1×12﹣×6×2﹣×6×10=30(cm2).(2)当t=秒时,AP=,BP=6﹣=,BQ=×2=3,CQ=12﹣3=9,∴在Rt△DAP中,DP2=DA2+AP2=122+()2=,在Rt△DCQ中,DQ2=DC2+CQ2=62+92=117,在Rt△QBP中,QP2=QB2+BP2=32+()2=,∴DQ2+QP2=117+=,∴DQ2+QP2=DP2,∴△DPQ为直角三角形;(3)假设运动开始后第x秒时,满足条件,则:QP=QD,∵OP2=PB2+BQ2=(6﹣x)2+(2x)2,QD2=QC2+CD2=(12﹣2x)2+62,∴(12﹣2x)2+62=(6﹣x)2+(2x)2,整理,得:x2+36x﹣144=0,解得:x=﹣18±6,∵0<6﹣18<6,∴运动开始后第6﹣18秒时,△DPQ是以PD为底的等腰三角形.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为(2,0),B点坐标为(5,0);(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.【分析】(1)y=,令y=0,解得:x=2或5,即可求解;(2)证明△OAC≌△DBC(SAS),则BD=OA=2,∠OBD=60°,即可求解;(3)分OD是平行四边形的边、OD是平行四边形的对角线两种情况,分别求解.【解答】解:(1)y=,令y=0,解得:x=2或5,故答案为:(2,0)、(5,0);(2)连接CD、BD,由(1)知:OA=2,AB=3,等边三角形ABC的边长为3,∵△ABC为等边三角形,∴AC=BC,∠ACB=60°=∠CAB,∴∠CAO=120°,∵∠COD=60°,且OD=OC,则△OCD为等边三角形,∴OD=CD=CO,则∠OCD=60°=∠OCA+∠ACD,而∠ACB=60°=∠ACD+∠DCB,∴∠OCA=∠DCB,而CO=CD,CA=CB,∴△OAC≌△DBC(SAS),∴BD=OA=2,∠CBD=∠CAO=120°,而∠CBO=60°,∴∠OBD=60°,则y D=﹣BD sin∠OBD=﹣2×=﹣,故点D的坐标为(4,﹣),当x=4时,y==﹣,故点D在抛物线上;(3)抛物线的对称轴为:x=,设点M(,s),点N(m,n),n=m2﹣m+5,①当OD是平行四边形的边时,当点N在对称轴右侧时,点O向右平移4个单位,向下平移个单位得到D,同样点M向右平移4个单位,向下平移个单位得到N,即:+4=m,s﹣=n,而n=m2﹣m+5,解得:s=则点M(,);当点N在对称轴左侧时,同理可得:点M(,);②当OD是平行四边形的对角线时,则4=+m,﹣=n+s,而n=m2﹣m+5,解得:s=,故点M的坐标为:(,)或(,)或(,).新人教版数学九年级上册期中考试试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;。
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=62.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠23.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣44.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>011.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠012.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新九年级(上)数学期中考试题(含答案)一、选择题(每小题4 分,共40 分)1、圆内接四边形A BCD 中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°2、⊙O 的半径为5c m,点A到圆心O的距离O A=3cm,则点A 与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3、将抛物线y=x2+1 向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A.y=(x+2)2+4 B.y=(x﹣2)2﹣4C.y=(x﹣2)2+4 D.y=(x+2)2﹣44、若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为()A .2B .4C .6D .85.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与 △CDE 对应边的比为 k ,则位似中心的坐标和 k 的值分别为()A .(0,0),2B .(2,2),12C .(2,2),2D .(2,2),3 6、如图,在△ABC 中,点 D 是 A B 边上的一点,若∠ACD =∠B ,AD =1,AC =3,△ADC 的面积为 1,则△ABC 的面积为( ) A .9B .8C .3D .27、如图,若二次函数 y =ax 2+bx +c (a ≠0)图象的对称轴为 x =1,与 y 轴交于 点 C ,与 x 轴交于点 A 、点 B (﹣1,0),则①二次函数的最大值为 a +b +c ②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是( )A .1B .2C .3D .48、如图,在平行四边形A BCD 中,点E在C D 上,若D E:CE=1:2,则△CEF 与△ABF 的周长比为()A.1:2 B.1:3 C.2:3 D.4:99、圆心角为60°的扇形面积为S,半径为r,则下列图象能大致描述S与r的函数关系的是()A.B.C.D.10、对某一个函数给出如下定义:如果存在常数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数;在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,函数y=﹣(x+1)2+2,y≤2,因此是有上界函数,其上确界是2,如果函数y=﹣2x+1(m≤x≤n,m<n)的上确界是n,且这个函数的最小值不超过2m,则m的取值范围是()A.m≤13B.m13<C.1312m<≤D.m12≤二、填空题(每题4分,共24 分)11 如图,△ABC 中,点D、E 分别在边A B、BC 上,DE∥AC.若B D=4,DA=2,BE=3,则E C=.12、在二次函数y=-x2 +2x+1的图像中,若y随x增大而增大,则x的取值范围是.13、如图,⊙O 与△ABC 的边A B、AC、BC 分别相切于点D、E、F,如果A B=4,AC=5,AD=1,那么B C的长为.第8题第11 题第13 题14、高4m 的旗杆在水平地面上的影子长6m,此时,旗杆旁教学楼的影长24m,则教学楼高m.15、若关于x的一元二次方程x2 -2x-k = 0 (k 为常数)在- 2 <x <3范围内有解,则k的取值范围是。