作业2数列极限
- 格式:doc
- 大小:196.00 KB
- 文档页数:3
求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
(1解:(1 )对知=0.1, a n -0 =<-:0.1 取 N =20 n(2)对 名2 = 0.01, a n —0 兰一£ 0.01, (3) £3=0.0014-0 n2< —n::取 N 2 =200取 N 3=2000必有n+12n 3n5n 2n 2_5_ _ 2n芒(n 1)nVs >0,取NT1,3},一n N ,有3n 2 n 3 2n 2-12 3< —<z n。
所以 第二章数列极限§ 1•数列极限概念1•设 an=^1;n"2,…,a"n对下列;分别求出极限定义中相应的N , ;1 =0.1,辽=0.01, ;3 =0.001;对1, ;2, 3可找到相应的 N ,这是否证明了 a n 趋于0?应该怎样做才对:对给定的;是否只能找到一个 N ?2•按;-N 定义证明:(1)lim 」1n¥ n +13n 2+n(2) lim 2 ------------i2 n -1证:因为3n 2+ n lim 2---------------------------------n—'2n -1证:因J-11 —:::-以一;• 0,取 Nn2(n 2n 2-1)n!(3)n my0;n!n (n -1)川 2 1n nn 「川 n n 证: n! n n 1 1 _ 一,- ; • 0,取N =[ 一]当 n ;n • N 时,有1 n! 订」代y 0n ‘: n (4) lim sin — =0. n Y nJI sin — -0 ___JI sin — 证:因为 n n JI< —nN是一;•0,取71;,_ n ■ N ,必有Jisin — -0 nTt <—< Sn 兀lim sin — = 0。
所以n厂 n(5) lim 冷=0(a 1). n Y a n 证::a h 令宀0),…八1 n 咛)・2 >咛2(n -1)' 2 2 ::;,n 1 2,一 ; 0,取N =[1 亍],当 n N 时, 8/L 8/L (n -1),2; ■ lim 2 =0 n .;:a n 3•根据例 2,例4和例5的结果求出下列极限,并指出那些是无穷小数列: (1)lim(2)lim n 3 (3)i im V (4)n im :?n— n(5) lim — !- n *(6) lim n 10n L :(7)lim -15昭1 lim - n厂.n 1=lim —r =0 n —■1 a —— (用例2的结果,2 ),无穷小数列。
第二章 数列极限习题2.按N -ε定义证明:(1)11lim=+∞→n nn证明 因为 n n n n 11111<+=-+,所以0>∀ε,取ε1=N ,N n >∀,必有ε<<-+n n n 111. 故11lim =+∞→n n n(2)23123lim 22=-+∞→n n n n 证明 因为 n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+)1(>n ,于是0>∀ε,取}3,1max{ε=N ,N n >∀,有 ε<<--+n n n n 32312322. 所以23123lim 22=-+∞→n n n n(3)0!lim =∞→n n n n证明 因为n n n n n n n n n n n n n n nn 11211)1(!0!≤⋅⋅⋅-=⋅⋅⋅-==-ΛΛΛ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<≤-n n n n10!. 所以0!lim =∞→n n n n(4)sinlim =∞→nn π证明 因为n nnπππ≤=-sin0sin,于是0>∀ε,取επ=N ,N n >∀,必有εππ<≤-nn0sin. 所以sinlim =∞→nn π(5))1(0lim>=∞→a a nnn证明 因为1>a ,设)0(1>+=h h a ,于是222)1(2)1(1)1(h n n h h n n nh h a n n n -≥++-++=+=Λ,从而22)1(22)1(0h n hn n n a n a n n n -=-≤=-,所以0>∀ε,取122+=h N ε,N n >∀,有ε<-≤-2)1(20h n a n n . 故0lim =∞→n n a n3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)n n 1lim∞→;(2)n n 3lim ∞→;(3)31limn n ∞→(4)n n 31lim ∞→;(5)n n 21lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 21==∞→∞→n nn n (用例2的结果,21=a ),无穷小数列.(2)13lim =∞→n n ,(用例5的结果,3=a )(3)01lim3=∞→n n ,(用例2的结果,3=a ),无穷小数列.(4)031lim 31lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,31=q ),无穷小数列.(5)021lim 21lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞→n n ,(用例5的结果,10=a ).(7)121lim 21lim==∞→∞→nn nn ,(用例5的结果,21=a ). 4.证明:若a a n n =∞→lim ,则对任一正整数 k ,有a a k n k =+∞→lim证明 因为aa n n =∞→lim ,所以εε<->∀>∃>∀||,,0,0a a N n N n ,于是,当Nk >时,必有N k n >+,从而有ε<-+||a a k n ,因此a a k n k =+∞→lim .5.试用定义1证明:(1)数列⎭⎬⎫⎩⎨⎧n 1不以1为极限;(2)数列}{)1(n n -发散.证明(用定义1证明) 数列}{n a 不以 a 为极限(即a a n n ≠∞→lim )的定义是:00>∃ε,0>∀N ,N n >∃0,0||0ε≥-a a n(1)取210=ε,0>∀N ,取N N n >+=20,有0021)1(212112111ε==++≥++=-+=-N N N N N n ,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.另证(用定义1’证明) 取210=ε,则数列⎭⎬⎫⎩⎨⎧n 1中满足2>n 的项(有无穷多个)显然都落在1的邻域)23,21();1(0=εU 之外,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.(2)数列}{)1(nn-=},6,51,4,31,2,1{Λ,对任何R a ∈,取10=ε,则数列}{)1(n n -中所有满足“n 为偶数,且1+>a n ”的项(有无穷多个),都落在 a 的邻域)1,1();(0+-=a a a U ε之外,故数列}{)1(nn -不以任何数 a 为极限,即数列}{)1(nn -发散.6.证明定理,并应用它证明数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 定理 数列}{n a 收敛于 a 充要条件是:}{a a n -为无穷小数列. (即a a n n =∞→lim 的充要条件是0)(lim =-∞→a a n n )证明 (必要性)设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<--=-|0)(|||a a a a n n ,所以 0)(lim =-∞→a a n n .(充分性)设0)(lim =-∞→a a n n ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<-=--|||0)(|a a a a n n ,所以a a n n =∞→lim .下面证明:数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 因为⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧--+n n n n )1(1)1(1是无穷小数列,所以数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 7.证明:若a a n n =∞→lim ,则||||lim a a n n =∞→. 当且仅当 a 为何值时反之也成立?证明 设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,ε<-≤-||||||a a a a n n ,所以也有||||lim a a n n =∞→. 但此结论反之不一定成立,例如数列})1{(n -.当且仅当 a = 0 时反之也成立. 设0||lim =∞→n n a ,于是,0,0>∃>∀N εN n >∀,ε<=||||n n a a ,所以aa n n =∞→lim .8.按N -ε定义证明:(1)0)1(lim =-+∞→n n n ; (2)0321lim3=++++∞→n nn Λ(3)1lim =∞→n n a ,其中⎪⎪⎩⎪⎪⎨⎧+-=为奇数为偶数n n n n n nn a n 2,1证明 (1)因为n nn n n 111|1|<++=-+. 于是0>∀ε,取21ε=N ,N n >∀,必有ε<<-+nn n 1|1|,从而0)1(lim =-+∞→n n n .(2)因为n n n n n n n n n n n 12212)1(3212233=+<+=+=++++Λ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-++++n n n 103213Λ,所以0321lim 3=++++∞→n n n Λ(3)因为当 n 为偶数时,n n n a n 111|1|=--=-当 n 为奇数时,nnn n nnn n n nn a n 111|1|222<++=-+=-+=-,故不管n 为偶数还是奇数,都有n a n 1|1|<-. 于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-n a n 1|1|,所以 1lim =∞→n n a .习题1.求下列极限:⑴ 根据例2 01lim=∞→an n ,0>a ,可得4131241131lim 32413lim 323323=++++=++++∞→∞→n n n n n n n n n n⑵ 0)21(lim 21lim 22=+=+∞→∞→n n n n n n⑶根据例4 0lim =∞→n n q ,1||<q ,可得313)32(31)32(lim 3)2(3)2(lim 111=+-⋅+-=+-+-+∞→++∞→n nn n n nnn⑷ 211111lim lim )(lim 22=++=++=-+∞→∞→∞→n n n n n n n n n n n这是因为由例1若aa n n =∞→lim ,则aa n n =∞→lim . 于是由1)11(lim =+∞→n n ,得1111lim ==+∞→n n .⑸ 10)1021(lim =+++∞→n n n n Λ,因为1lim =∞→n n a (0>a )⑹ 23113113121121121lim 313131212121lim 22=--⋅--⋅=++++++∞→∞→nn n n n n ΛΛ2.设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正数N ,使得当N n >时,有n n b a <.证明 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<. 又因为2lim b a b b n n +>=∞→,所以,又存在02>N ,使得当2N n >时有2b a b n +>. 于是取},m ax {21N N N =,当N n >时,有nn b b a a <+<2. 3.设}{n a 为无穷小数列,}{n b 为有界数列,证明:}{n n b a 为无穷小数列.证明 因为}{n b 为有界数列,所以存在0>M ,使得Λ,2,1,||=≤n M b n. 由}{n a 为无穷小数列,知,0,0>∃>∀N εN n >∀,M a n ε<||. 从而当N n >时,有εε=⋅<⋅=M Mb a b a n n n n ||||||,所以0lim =∞→n n n b a ,即}{n n b a 为无穷小数列.4.求下列极限(1)1111lim 11131212111lim )1(1321211lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→∞→∞→n n n n n n n n ΛΛ(2)因为nnn n212112181412128422222222===-+++ΛΛ,而)(12221121∞→→=<<n nnn,于是12lim 21=∞→nn ,从而222lim2222lim 21284==∞→∞→nnn n Λ(3)32323lim 23221229272725253lim 2122321lim 13222=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++-+-+-=⎪⎭⎫ ⎝⎛-+++∞→-∞→∞→n n n n n n n n n n n ΛΛ(4)当2>n 时,11121<-<n ,n n n n 11121<-<,而11lim 21lim ==∞→∞→n n n n ,所以111lim =-∞→n n n .(5)因为)(,0111)2(1)1(11022222∞→→+=+≤++++<n n n n n n n n Λ,所以 0)2(1)1(11lim 222=⎪⎪⎭⎫⎝⎛++++∞→n n n n Λ(6)因为1112111222222=≤+≤++++++≤+nn n n n n n n nn n Λ,且1111limlim2=+=+∞→∞→nnn n n n ,所以112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n Λ 5.设}{n a 与}{n b 中一个是收敛数列,另一个是发散数列,证明}{n nb a ±是发散数列. 又问}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是否必为发散数列.证明 (用反证法证明)不妨设}{n a 是收敛数列,}{n b 是发散数列. 假设数列}{n n b a +收敛,则n n n n a b a b -+=)(收敛,这与}{n b 是发散数列矛盾,所以,数列}{n n b a +发散.同理可得数列}{n n b a -发散.}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 不一定是发散数列. 例如,若}{n a 是无穷小数列,}{n b 是有界的发散数列. 则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是无穷小数列,当然收敛.但是,有下列结果:如果0lim ≠=∞→a a n n ,}{n b 是发散数列,则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n a a b 一定是发散数列.6.证明以下数列发散:(1)⎭⎬⎫⎩⎨⎧+-1)1(n n n证明 设1)1(+-=n n a nn ,则)(,11222∞→→+=n n n a n ,而121212-→--=-n n a n ,由,定理 知⎭⎬⎫⎩⎨⎧+-1)1(n n n发散. (2){}nn )1(-证明{}nn )1(- 的偶数项组成的数列n a n 22=,发散,所以{}nn)1(-发散.(3)⎭⎬⎫⎩⎨⎧4cos πn 证明 设4cosπn a n =,则子列 )(,118∞→→=n a n ,子列 )(,1148∞→-→-=+n a n ,故⎭⎬⎫⎩⎨⎧4cos πn 发散. 7.判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若}{12-k a 和}{2k a 都收敛,则}{n a 收敛.解 结论不一定成立. 例如,设nn a )1(-=,则12=ka ,112-=-k a 都收敛,但n n a )1(-=发散.注 若}{12-k a 和}{2k a 都收敛,且极限相等(即kk k k a a 212lim lim ∞→-∞→=),则}{n a 收敛.(2)若}{23-k a ,}{13-k a 和}{3k a 都收敛,且有相同的极限,则}{n a 收敛.证明 设aa a a k k k k k k ===∞→-∞→-∞→31323lim lim lim ,则由数列极限的定义,知0>∀ε,01>∃K ,1K k >∀,ε<--||23a a k ;同样也有02>∃K ,2K k >∀,ε<--||13a a k ;03>∃K ,3K k >∀,ε<-||3a a k . 取}3,3,3m ax {321K K K N =,当N n >时,对任意的自然数 n ,若23-=k n ,则必有1K k >,从而ε<-||a a n;同样若13-=k n ,则必有2K k >,从而也有ε<-||a a n;若k n 3=,则必有3K k >,从而ε<-||a a n . 所以aa n k =∞→lim ,即}{n a 收敛.8.求下列极限:(1)n n k 2124321lim-∞→Λ解 因为n n 2126543210-<Λ121)12)(12(12)12)(32(32755533311+=+-----⋅⋅⋅<n n n n n n n Λ而0121lim =+∞→n k ,所以 02124321lim =-∞→n n k Λ 另解 因为12254322124321+<-n n n n ΛΛ,设n n S n 2124321-=Λ,1225432+=n n T n Λ,则n n T S <. 于是121+=⋅<n S T S S n n n n ,所以121+<n S n .(2) 答案见教材提示. (3)10],)1[(lim <<-+∞→αααn n k解 ]1)11[(]1)11[()1(0-+<-+=-+<n n n n n n ααααα)(,011∞→→==-n n n n αα所以,0])1[(lim =-+∞→ααn n k另解 因为01<-α,所以11)1(--<+ααn n ,于是11)1()1(--+=+<+ααααn n n n n ,从而)(,0)1(01∞→→<-+<-n n n n ααα.(4) 答案见教材提示. 9.设m a a a Λ,,21为 m 个正数,证明:},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→证明 因为 },,max{},,max{212121m n n nn n n m a a a n a a a a a a ΛΛΛ≤+++≤而1lim =∞→n n n ,所以},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→10.设aa n n =∞→lim ,证明:(1)a n na n n =∞→][lim; (2)若0,0>>n a a ,则1lim =∞→n n n a .证明 (1)因为1][][+<≤n n n na na na ,所以nn n a n na n na ≤<-][1. 由于a n a n na n n n n =⎪⎭⎫ ⎝⎛-=-∞→∞→1lim 1lim ,且a a n n =∞→lim ,从而a n na n n =∞→][lim .(2)因为 0lim >=∞→a a n n ,由 定理,存在0>N ,使得当N n >时,有a a a n232<<. 于是 n n n na a a 232<<,并且123lim 2lim ==∞→∞→n n n n a a ,所以1lim =∞→n n n a .习题1.利用e n nn =⎪⎭⎫⎝⎛+∞→11lim 求下列极限:(1)e n n n n n n n nn nn 11111111lim 1lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--∞→∞→∞→(2)e n n n nn n n =⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→+∞→1111lim 11lim 1(3)e n n n n n nn =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++∞→∞→111111lim 111lim 1(4)en n n nn n n nn =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→⋅∞→∞→2212211lim 211lim 211lim注:此题的求解用到事实(例1):若aa n n =∞→lim ,且Λ,2,1,0=≥n a n ,则aa n n =∞→lim .(5)nn n ⎪⎭⎫ ⎝⎛+∞→211lim 解 因为数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11单调增加,且有上界 3,于是 )(,1311111222∞→→<⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+<n n n n n n n,所以111lim 2=⎪⎭⎫ ⎝⎛+∞→nn n2.试问下面的解题方法是否正确:求nn 2lim ∞→解 不正确. 因为极限nn 2lim ∞→是否存在还不知道(事实上极限nn 2lim ∞→不存在),所以设an n =∞→2lim 是错误的.3.证明下列数列极限存在并求其值: (1)设Λ,2,1,2,211===+n a a a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:2是}{n a 的一个上界.221<=a ,假设2<n a ,则22221=⋅<=+n n a a ,所以}{n a 有上界2.其次证明}{n a 单调增加. 02)2(21>+-=-=-+n n n n n n n n a a a a a a a a ,所以n n a a >+1,即}{n a 单调增加. 从而}{n a 极限存在,设a a n n =∞→lim ,在n n a a 221=+的两端取极限,得a a 22=,解之得 a = 0 (舍去) 和 2,所以2lim =∞→n n a .注:}{n a 的单调增加也可以如下证明:122221=>==+n n n n n a a a a a ,所以n n a a >+1.还可以如下得到:121214121214121122++++++++=<=+n na a n n nΛΛ(2)设Λ,2,1,),0(11=+=>=+n a c a c c a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:}{n a 的一个上界是 1 + c .c c a +<=11,假设c a n +<1,则c c c c a c a n n +=++<+<+=+1121221,所以}{n a 有上界1 + c .其次证明}{n a 单调增加(用数学归纳法证明). 21a c c c a =+<=,假设n n a a <-1,于是n n a c a c +<+-1,从而n n a c a c +<+-1,即1+<n n a a . 故}{n a 单调增加. 所以}{n a 极限存在,设a a n n =∞→lim ,在n n a c a +=+21的两端取极限,得a c a +=2,解之得 2411ca +±=. 由于a n > 0 ,所以 a > 0 . 故 2lim =∞→n n a . (3)Λ,2,1),0(!=>=n c n c a nn证明 先证}{n a 从某一项以后单调减少. 取自然数 N 使得 N > c ,于是当N n >时,nn n n n n a a N ca n c n c n c n c a <+<+=+=+=++11!1)!1(11,即从第N 项开始}{n a 单调减少.由于}{n a 的各项都大于零,所以}{n a 有下界0. 从而}{n a 极限存在. 设a a n n =∞→lim ,在n n a n c a 11+=+的两端取极限,得a a ⋅=0,故0=a ,即0lim =∞→n n a .4.利用⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11为递增数列的结论,证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++nn 111为递增数列. 证明 设nn n n n n a ⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=12111,要证:Λ,3,2,1=≤-n a a n n ,即 因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为递增数列,所以有111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n , 即1121+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n n n ,于是nnn n n n a n n n n n n n n n n n n n n a =⎪⎭⎫⎝⎛++<+⋅++⋅⎪⎭⎫ ⎝⎛++=+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+=+--12112121121111.其中用到事实:1)1()2(1122≤++=+⋅++⋅n n n n n n n .5.应用柯西收敛准则,证明以下数列}{n a 收敛:(1)n n na 2sin 22sin 21sin 2+++=Λ 证明 不妨设m n >,则有n m m m n nm m a a 2sin 2)2sin(2)1sin(||21+++++=-++Λn m m n m m n m m 2121212sin 2)2sin(2)1sin(2121+++≤+++++≤++++ΛΛ ⎪⎭⎫ ⎝⎛+++++<⎪⎭⎫ ⎝⎛+++=---+--+ΛΛΛm n m n m m n m 21212112121211211111 m m m 1212211<=⋅=+ 所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛. (2)222131211n a n ++++=Λ 证明 不妨设m n >,则有2221)2(1)1(1||n m m a a m n +++++=-Λ n n m m m m )1(1)2)(1(1)1(1-++++++≤Λ m n m n n m m m m 1111112111111<-=--+++-+++-=Λ所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛.6.证明:若单调数列}{n a 含有一个收敛子列,则}{n a 收敛.证明 不妨设}{n a 是单调增加数列,}{k n a 是其收敛子列. 于是}{k n a 有界,即存在0>M ,使得Λ,2,1,=≤k M a kn . 对单调增加数列}{n a 中的任一项m a 必有M a a km m ≤≤,即}{n a 单调增加有上界,从而收敛.7.证明:若0>n a ,且1lim1>=+∞→l a a n nn ,则0lim =∞→n n a证明 因为1lim 1>=+∞→l a a n n n ,所以存在 r 使得1lim 1>>=+∞→r l a a n n n . 于是由数列极限的保号性定理(),存在0>N ,当N n >时,ra a n n>+1,1+>n nra a . 从而有n N n N N N a r a r ra a 13221--+++>>>>Λ, 因此,)(,0011∞→→<<--+n r a a N n N n , 故lim =∞→n n a .8.证明:若}{n a 为递增有界数列,则}sup{lim n n n a a =∞→;若}{n a 为递减有界数列,则}inf{lim n n n a a =∞→. 又问逆命题成立否?证明 证明过程参考教材,定理(单调有界定理).逆命题不一定成立. 例如数列⎪⎩⎪⎨⎧-=为偶数为奇数n n n a n 111,1}sup{lim ==∞→nn n a a ,但}{n a 不单调.9.利用不等式 0),()1(11>>-+>-++a b a b a n a bn n n ,证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,并由此推出⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列.证明 设111+⎪⎭⎫⎝⎛+=n n n a ,由不等式 )()1(11a b a n a b n n n -+>-++,有 1111++++-+->-n n n n n n a b a na b na a b ,于是b a na b na b n n n n +->++11, b na a na b n n n n 1+-+>.在上式中令1111,111-=-+=+=+=n n n b n n n a ,a b >,得 nn n n n n a ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+=-11111nn nnn n n n n n n n n n n ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+>11111nn n n a n n n n n n n =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+11111即n n a a >-1,故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列.而4111111111=⎪⎭⎫ ⎝⎛+≤⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛++n nn n ,所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列. 10.证明:n n e n 3)11(<+- 证 由上题知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,于是对任何n m >有, 111111++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+m n n n ,令∞→m ,取极限得,en n >⎪⎭⎫ ⎝⎛++111 ①又因为nnnn n n n n n n ⎪⎭⎫⎝⎛++⋅<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛++113111111111②由①、②得nn n n n e ⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+<+113111,从而 n n e n e n n 3)11()11(<+-=+-11.给定两正数 a 1 与 b 1 ( a 1 > b 1 ),作出其等差中项2112b a a +=与等比中项112b a b =,一般地令21nn n b a a +=+,Λ,2,1,1==+n b a b n n n证明:nn a ∞→lim 与nn b ∞→lim 皆存在且相等.证明 因为11b a >,所以有nnn n n n a a a b a a =+<+=+221,即}{n a 单调减少. 同样可得}{n b 单调增加. 于是有11112b b b a b a a a n n n n n n ≥=≥+=≥++,即}{n a 单调减少有下界,}{n b 单调增加有上界,故n n a ∞→lim 与nn b ∞→lim 皆存在.在n n n b a a +=+12的两端取极限,可得n n n n b a ∞→∞→=lim lim12.设}{n a 为有界数列,记},,sup{1Λ+=n n n a a a ,},,inf{1Λ+=n n n a a a证明:⑴ 对任何正整数n ,n na a ≥;⑵}{n a 为递减有界数列,}{n a 为递增有界数列,且对任何正整数n ,m 有m n a a ≥;⑶ 设a 和a 分别是}{n a 和}{n a 的极限,则a a ≥;⑷ }{n a 收敛的充要条件是a a =证 ⑴ 对任何正整数n ,n n n n n n n a a a a a a a =≥≥=++},,inf{},,sup{11ΛΛ⑵ 因为1211},,sup{},,sup{++++=≥=n n n n n na a a a a a ΛΛ,Λ,2,1=n ,所以}{na 为递减有界数列.由1211},,inf{},,inf{++++=≤=n n n n n n a a a a a a ΛΛ,知}{n a 为递增有界数列.对任何正整数n ,m ,因为}{n a 为递减有界数列,}{n a 为递增有界数列,所以有m m n m n n a a a a ≥≥≥++.⑶ 因为对任何正整数n ,m 有m n a a ≥,令∞→n 得,mn n a a a ≥=∞→lim ,即m a a ≥,令∞→m 得aa a m m =≥∞→lim ,故a a ≥.⑷ 设}{n a 收敛,a a n n =∞→lim . 则0>∀ε,0>∃N ,N n >∀,ε<-||a a n,εε+<<-a a a n . 于是有εε+≤<-a a a n ,从而a a a n n ==∞→lim . 同理可得a a a n n ==∞→lim ,所以aa =反之,设a a =. 由a a n n =∞→lim , a a a n n ==∞→lim ,得0>∀ε,0>∃N ,N n >∀, 有εε+<<-a a a n 及εε+<<-a a a n ,从而εε+<≤≤<-a a a a a n n n总练习题1.求下列数列的极限: (1)n nn n 3lim 3+∞→解 当3>n 时,有nn 33<,于是)(,323323333∞→→⋅=⋅<+<=n n n n n n n n n ,所以33lim 3=+∞→n n n n(2)nn e n 5lim∞→解 设h e +=1,则当6>n 时,62!6)5()1(!2)1(1)1(hn n n h h n n nh h e n n n --≥++-++=+=ΛΛ,于是)(,0)5)(4)(3)(2)(1(!60655∞→→-----⋅<<n h n n n n n n n e n n ,所以0lim 5=∞→n n e n解法2 用 习题7的结论. 设nn e n a 5=,1)1(lim lim 5151>=+=+∞→+∞→e n e e n a a n n n n n n ,从而0lim lim 5==∞→∞→n n n n a e n .解法3 用 习题2⑸的结果0))((lim lim 5515==∞→∞→n n n n e ne n解法4 用单调有界定理. 令nn e n a 5=,则51)11(1n e a a n n +=+. 因为e n n <=+∞→1)11(lim 5,所以存在0>N ,当N n >时,e n <+5)11(,从而当N n >时,1)11(151<+=+n e a a n n . 于是从N n >起数列}{n a 递减,且有下界0,因此}{n a 收敛. 设a a n n =∞→lim ,在等式nn a n e a ⋅+=+51)11(1的两端取极限,得a e a ⋅=1,所以0=a .(3))122(lim n n n n ++-+∞→解 )]1()12[(lim )122(lim +-++-+=++-+∞→∞→n n n n n n n n n011121lim =⎥⎦⎤⎢⎣⎡++-++++=∞→n n n n n2.证明: (1))1|(|0lim 2<=∞→q q n n n证明 当0=q 时,结论成立.当1||0<<q 时,有1||1>q ,令0,1||1>+=h h q ,于是有nn h q )1(1+=,而由牛顿二项式定理,当3>n 时有3!3)2)(1()1(hn n n h n --≥+,从而)(0!3)2)(1()1(03222∞→→--≤+=<n h n n n n h n q n nn,所以lim 2=∞→n n q n另解 用 习题2⑸的结果)(sgn ))||1((lim lim 22==∞→∞→n nn n n q q n q n(2))1(,0lg lim≥=∞→ααn nn证明 因为0,lg ><x x x ,于是)(,022lg 2lg 021∞→→=<=<-n n n n n n n n αααα,所以0lg lim =∞→αn n n .(3)0!1lim =∞→n n n 证明 先证明不等式:nn n ⎪⎭⎫⎝⎛>3!. 用数学归纳法证明,当1=n 时,显然不等式成立;假设nn n ⎪⎭⎫⎝⎛>3!成立,当 n + 1 时 nn n n n n n n n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅+=⎪⎭⎫ ⎝⎛⋅+>⋅+=+131)1(3)1(!)1()!1(113111331++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+=n nn n n n故不等式nn n ⎪⎭⎫⎝⎛>3!成立. 由此可得)(,03!10∞→→<<n n n n ,所以0!1lim =∞→n n n另解 用数学归纳法证明不等式:n n n≥!3.设aa n n =∞→lim ,证明:(1)a n a a a nn =+++∞→Λ21lim(又问由此等式能否反过来推出a a n n =∞→lim )证明 因为aa n n =∞→lim ,于是有11,0,0N n N >∀>∃>∀ε,2||ε<-a a n . 从而当1N n >时,有n naa a a a n a a a n n -+++=-+++ΛΛ212122||||||||||||12121111εε+≤⋅-+≤-++-+-+-++-+-≤++n A n N n n A na a a a a a n a a a a a a n N N N ΛΛ其中||||||121a a a a a a A N -++-+-=Λ是一个定数. 再由0lim =∞→n A n ,知存在02>N ,使得当2N n >时,2ε<n A . 因此取},m ax {21N N N =,当N n >时,有εεεε=+<+≤-+++22221n A a n a a a n Λ.反过来不一定成立. 例如nn a )1(-=不收敛,但0lim21=+++∞→n a a a nn Λ.练习:设+∞=∞→n n a lim ,证明:+∞=+++∞→n a a a n n Λ21lim(2) 若),2,1(0Λ=>n a n ,则a a a a n n n =∞→Λ21lim证明 先证算术平均值—几何平均值—调和平均值不等式:na a a a a a a a a nnn n n+++≤≤+++ΛΛΛ212121111算术平均值—几何平均值不等式:n a a a a a a nnn +++≤ΛΛ2121对任何非负实数1a ,2a 有2)(212121a a a a +≤,其中等号当且仅当21a a =时成立. 由此推出,对4个非负实数1a ,2a ,3a ,4a 有2143212121432121414321)22(])()[()(a a a a a a a a a a a a +⋅+≤=422243214321a a a a a a a a +++=+++≤按此方法继续下去,可推出不等式n a a a a a a nn n +++≤ΛΛ2121对一切kn 2=(Λ,2,1,0=k )都成立,为证其对一切正整数n 都成立,下面采用所谓的反向归纳法,即证明:若不等式对某个)2(≥n 成立,则它对1-n 也成立.设非负实数121,,,-n a a a Λ,令)(11121-+++-=n n a a a n a Λ,则有)1(1)1()(12112111211121-+++++++≤-+++⋅----n a a a a a a n n a a a a a a n n n n nn ΛΛΛΛ整理后得)(11)(12111121---+++-≤n n n a a a n a a a ΛΛ,即不等式对1-n 成立,从而对一切正整数n 都成立.几何平均值—调和平均值不等式n nna a a a a a nΛΛ2121111≤+++的证明,可令i i x y 1=,再对i y (n i ,,2,1Λ=)应用平均值不等式.由),2,1(0Λ=>n a n ,知0lim ≥=∞→a a n n . 若0≠a ,则a a n n 11lim=∞→. 由上一小题的结论,有)(,111212121∞→→+++≤≤+++n a na a a a a a a a a nnn n nΛΛΛ而a an a a a a a a n n n n n ==+++=+++∞→∞→111111lim 111lim 2121ΛΛ,所以aa a a n n n =∞→Λ21lim .若0=a ,即0lim =∞→n n a ,则11,0,0N n N >∀>∃>∀ε,ε<na . 从而当1N n >时,有n N n n N n n N N nn a a a a a a a a a a a 11112112121-+⋅≤⋅=εΛΛΛΛεεεε⋅=⋅=⋅=--n n N N nN n n N A a a a a a a 11112121ΛΛ其中1121N N a a a A -=εΛ,是定数,故21lim <=∞→nn A ,于是存在02>N ,使得当2N n >时,2<n A . 因此取},m ax {21N N N =,当N n >时,有εε221<⋅≤n nn A a a a Λ,故0lim 21=∞→n n n a a a Λ4.应用上题的结论证明下列各题:(1)0131211lim=++++∞→n n n Λ证明 令n a n 1=,则01lim lim ==∞→∞→n a n n n ,所以0131211lim =++++∞→n n n Λ.(2))0(1lim >=∞→a a n n证明 令a a =1,Λ,3,2,1==n a n ,则1lim =∞→n n a ,从而1lim lim lim 21===∞→∞→∞→n n n n n n n a a a a a Λ(3)1lim =∞→n n n证明 令11=a ,Λ,3,2,1=-=n n na n ,则1lim =∞→n n a ,于是1lim lim 13423121lim lim 21===-⋅⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n a a a a n nn ΛΛ.(4)!1lim=∞→nn n证明 令Λ,2,1,1==n n a n ,则0lim =∞→n n a ,所以1lim 1211lim 3211lim !1lim==⋅⋅⋅=⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n n n ΛΛ(5)e n n n n =∞→!lim 证明 令Λ,3,2,111111=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=--n n n n a n n n ,则ea n n =∞→lim ,所以en n n n n n n n n n n n n n nn n n =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==-∞→-∞→∞→∞→114321lim 14534232lim !lim !lim另证 令Λ,2,1,!==n n n a nn ,则e n a a n n n n n =⎪⎭⎫ ⎝⎛-+=-∞→-∞→11111lim lim . 于是e a a a a a a a a a n nn n n n n n n n n n n n ==⋅⋅⋅==-∞→-∞→∞→∞→112312lim lim lim !lim Λ. (6)1321lim 3=++++∞→n nn n Λ证明 因为1lim =∞→n n n ,所以1lim 321lim 3==++++∞→∞→n n nn n n n Λ(7)若)0(lim 1>=+∞→n n n n b a b b,则a b n n n =∞→lim证明n n n n n n n nn n n n n n b b b b bb b b b b b b b b b 112312112312lim lim lim lim ∞→+∞→+∞→∞→⋅⋅⋅⋅=⋅⋅⋅⋅=ΛΛab b n n n =⋅=+∞→1lim1(8)若d a a n n n =--∞→)(lim 1,则d n a nn =∞→lim证明 设10=a⎥⎦⎤⎢⎣⎡-++-+-+=-∞→∞→n a a a a a a n an a n n n n n )()()(lim lim112010Λd a a n a a a a a a n a n n n n n n n =-+=-++-+-+=-∞→-∞→∞→)(lim 0)()()(lim lim1112010Λ5.证明:若}{n a 为递增数列,}{n b 为递减数列,且 0)(lim =-∞→n n n b a ,则n n a ∞→lim 与nn b ∞→lim 都存在且相等.证明 因为)(lim =-∞→n n n b a ,所以}{n n b a -有界,于是存在0>M ,使得M b a M n n ≤-≤-. 从而有1b M b M a n n +≤+≤, M a M a b n n -≥-≥1,因此}{n a 为递增有上界数列,}{n b 为递减有下界数列,故n n a ∞→lim 与nn b ∞→lim 都存在. 又因为0)(lim lim lim =-=-∞→∞→∞→n n n n n n n b a b a ,所以 nn n n b a ∞→∞→=lim lim .6.设数列}{n a 满足:存在正数M ,对一切 n 有M a a a a a a A n n n ≤-+-+-=-||||||12312证明:数列}{n a 与}{n A 都收敛.证明 数列}{n A 单调增加有界,故收敛. 由柯西收敛准则,0,0>∃>∀N ε,当N n m >>时,ε<-||n m A A . 于是ε<-=-++-+-≤-+---n m n n m m m m n m A A a a a a a a a a ||||||||1211Λ所以由柯西收敛准则,知数列}{n a 收敛.7.设⎪⎭⎫ ⎝⎛+=>>a a a a σσ21,0,01,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211, Λ,2,1=n , 证明:数列}{n a 收敛,且其极限为σ证明 因为σσσ=⋅≥⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a 211,故数列}{n a 有下界σ.112112121=⎪⎭⎫⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+σσσn n n a a a ,于是n n a a ≤+1,即数列}{n a 单调减少,从而数列}{n a 收敛. 设A a n n =∞→lim ,由⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211,得σ+=+212n n n a a a ,两端取极限得,σ+=222A A ,解得σ=A ,所以σ=∞→n n a lim .8.设011>>b a ,记211--+=n n n b a a ,11112----+⋅=n n n n n b a b a b ,Λ,3,2=n . 证明:数列}{n a 与}{n b 的极限都存在且等于11b a .证 因为 111121111212111112)(2--------------+⋅-+=++≤+⋅=n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b n n n n n n n n n b b a b a b a b a -+=+⋅-+=--------111111112,所以nn n n a b a b =+≤--211,Λ,3,2=n数列}{n a 是递减的:n nn n n n a a a b a a =+≤+=+221,Λ,2,1=n数列}{n a 有下界:0211≥+=--n n n b a a ,Λ,2,1=n ,所以}{n a 收敛,设a a n n =∞→lim .数列}{n b 是递增的:11111111122---------=+⋅≥+⋅=n n n n n n n n n n b a a ba b a b a b ,Λ,3,2=n数列}{n b 有上界:1a a b n n ≤≤,Λ,2,1=n ,所以}{n b 收敛,设b b n n =∞→lim .令∞→n 在211--+=n n n b a a 的两端取极限,得b a =.211--+=n n n b a a 与11112----+⋅=n n n n n b a b a b 两端分别相乘,得11--=n n n n b a b a ,Λ,3,2=n 所以有11b a b a nn =,Λ,3,2=n ,令∞→n 取极限得11b a ab =,从而11b a a =。
A 第一章 函数与极限作业1 函 数1.填空题 (1)函数31arcsin11)(2+−−=x x x f 的定义域为]2,1()1,4[∪−−; (2)没x x x x f ln ln 1ln 1=⎟⎠⎞⎜⎝⎛+−,则=)(x f t te t t +−+−1111; (3)设2()e x f x =,x x f 31)]([−=ϕ,且0)(≥x ϕ,则=)(x ϕ()x 31ln −,(4)函数3sin 22cos xx y+=的周期为π12;(5)函数)2ln(1++=x y的反函数=y 21−−x e ;(6)将函数|2|2x x y −+=用分段函数表示为=y ⎩⎨⎧<+≥−2,22,23x x x x . 2.设函数)(x f y=的定义域为[0,2],求下列函数的定义域:(1))(2x f y=;解:由202≤≤x ,知该函数的定义域为]2,2[− (2))()(a x f a x f y−++=,(0>a );解:由⎩⎨⎧≤−≤≤+≤2020a x a x ,知⎩⎨⎧+≤≤−≤≤−ax a ax a 22,从而该函数的定义域:当10≤<a 时为]2,[a a −,否则为空集(3))(sgn x f y =, 其中⎪⎩⎪⎨⎧<−=>=0,10,00,1sgn x x x x .解:由2sgn 0≤≤x ,知该函数的定义域为),0[+∞ 3.判定下列函数的奇偶性: (1))(log )(22a x x x f a ++=;解:由()()()x f ax x a a x x x f a a −=++=⎟⎠⎞⎜⎝⎛+−+−=−2log log 22222,知该函数非奇非偶 (2)3cos ()|sin |e x f x x x =.解:由()()()()x f e x x e x x x f x x ==−−=−−cos 3cos 3sin sin ,知该函数为偶4.设⎩⎨⎧>++≤−=0),1ln(20,sin 2)(x x x x x f , ⎩⎨⎧≥−<=0,0,)(2x x x x x ϕ, 求)]([x f ϕ.解:()⎩⎨⎧<++≥+=⎩⎨⎧>++≤−=0,1ln 20,sin 20)]([)]},([1ln{20)]([)],(sin[2)]([2x x x x x x x x x f ϕϕϕϕϕ5.没⎪⎩⎪⎨⎧>−≤≤−−<−=2,121021,1,21)(32x x x x x x x f ,求)(x f 的反函数. 解:因为,当1−<x 时21,12,12122yx y x x y −−=−=−<−= 当21≤≤−x 时33],8,1[y x x y =−∈=;当2>x 时1012,81210+=>−=y x x y 故反函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>+≤≤−−<−−==8,101281,1,213x x x x x xy6.证明函数x x f 31)(−=在其定义域内无界.证明:由无界的定义,D x M ∈∃>∀0,0,使()M x x f >−=0031 因为133113000+≤−≤−x x x ,只要M x >−130,即310+>M x 因而只要取320+=M x 即有()M M x f =−+>13130 从而x x f 31)(−=在其定义域R 内无界作业2 数列的极限1. 用数列极限的“N −ε”定义证明下列极限:(1)nn n n −→∞224lim =4;证明:因为n n n n n x n 81444422<−=−−=−0>∀ε,要ε<−4n x ,只要εε8,8><n n取⎦⎤⎢⎣⎡+=ε82N ,则当N n >时81n N ε≥+>从而ε<−4n x ,由定义nn n n −→∞224lim(2)()n n n −+→∞1lim=0;证明:因为0n x −==<0>∀ε,要0n x ε−<取211N ε⎡⎤=+⎢⎥⎣⎦,则当N n >时211n N ε≥+>从而0n x ε−<,由定义lim0n →∞−=(3)nn n 3lim 2→∞=0.证明:因为,当6n >时,()()()()3231121212222!3!2nn n n n n n n −−−+=+⋅+++>L 2203n n n x n−=<0>∀ε,要0n x ε−<,只要22,n n εε<>,取26N ε⎡⎤=+⎢⎥⎣⎦,则当N n >时21n N ε≥+>,从而0n x ε−<,由定义2lim 03n n n →∞=2.证明:若A u n n =→∞lim ,则||||lim A u n n =→∞,并举例说明其逆命题不成立.证明:由A u n n =→∞lim知0>∀ε,存在0N >,当N n >时n u A ε−<,而n n u A u A −≤−,从而n u A ε−<,由定义||||lim A u n n =→∞逆命题不成立,例如:()1nn u =−,虽然lim ||1n n u →∞=,但lim n n u →∞不存在3.设数列}{n u 有界,而0lim =∞→n n v ,求证:0lim =→∞n n n v u .证:{}n u Q 有界,所以存在0,n M u M >≤, 又0lim=∞→n n v ,0>∀ε,对于1Mεε=存在0N >,当N n >时1n v ε<,从而n n n n u v u v MMεε=<=,由定义0lim =→∞n n n v u4.设数列}{n u ,}{n v 有相同的极限为A ,求证:若. n n n v u x −=,则0lim=→∞n n x .证:由已知0>∀ε,对于12εε=存在10N >,当1n N >时2n u ε<,存在20N >,当2n N >时2n v ε<,取12max{,}N N N =,则当N n >时,()0n n n n n x u A v A u A v A ε−=−−−≤−+−<,由定义0lim =→∞n n x5.若0lim>=∞→A u n n ,(1)证明存在0>N ,当N n >时,有02>>Au n ; (2)用数列定义证明1lim1=+∞→nn n u u . 证:(1)由已知,对于02Aε=>存在0N >,当n N >时2n A u A −<即3,2222n n A A A Au A u −<−<<<,从而当N n >时,有02>>A u n(2)由(1)10N ∃>,当1n N >时,有120,02n n A u u A>><<, 从而()111121n n n n n n n n n n u u u A u A u u A u A u u u A++++−−+−−=≤<−+−又0ε∀>,对于14A εε=存在20N >,当2n N >时4n A u A ε−< 因此12124n n u A u A εε+−<⋅⋅=,由定义1lim 1=+∞→nn n u u作业3 函数的极限1. 根据函数极限定义证明: (1)2)54(lim 2=−+++∞→x x x x ;证:不妨设0x >=0ε∀>,要ε<,只要11,x xεε<>取10X ε=>,当x X >ε<由定义2)54(lim 2=−+++∞→x x x x(2)111lim2=−→x x .证:不妨设11312,1,22221x x x −<<−<<−, 这时1212111x x x x −−=<−−− 0ε∀>,要111x ε−<−,只要12x ε−<,取1min{,}022εδ=>,当01x δ<−<时一定有111x ε−<−,由定义111lim2=−→x x 2. 已知1)(lim =→x f ax ,证明(1)存在01>δ,使得当1||0δ<−<a x 时,65)(>x f ; (2) 对任意取定的)1,0(∈K,存在2δ,使得当2||0δ<−<a x 时,K x f >)(.证:由1)(lim =→x f ax ,(1)对16ε=存在01>δ,使得当1||0δ<−<a x 时,()1151,()1666f x f x −<>−= (2)()0,1,10,K K ∀∈−>对10K ε=−>存在20δ>,使得当20||x a δ<−<时,()()11,()11fx K f x K K −<−>−−=3.(1)设⎪⎩⎪⎨⎧>−=<+=2,132,02,12)(x x x x x x f ,研究)(x f 在2=x 处的左极限、右极限及当2→x 时的极限;(2)设⎪⎩⎪⎨⎧≥−<<≤−+=2,2221,1,32)(2x x x x x x x x f ,研究极限)(lim 1x f x →,)(lim 2x f x →,)(lim 3x f x →是否存在,若存在将它求出来.解:(1)()()()()20202020lim lim 215,lim lim 315x x x x f x x f x x →−→−→+→+=+==−=从而()2lim 5x f x →=(2)()()()21010lim 1,101230x f f x f →++==−=+−=,故()1lim x f x →不存在,()()()2202,202222,lim 2x f f f x →−=+=⋅−==,()3lim 2324x f x →=⋅−=4. 设A x f ax =→)(lim,证明存在a 的去心邻域o0U (,)a δ,使得)(x f 在该邻域内是有界的. 证:lim ()x af x A →=Q,由定义对01,0εδ=∃>,当o0U (,)x a δ∈时,()()()1,1f x A f x A f x A −≤−<<+,从而)(x f 在该邻域内是有界的.5. 如果当0x x →时,)(x f 的极限存在.证明此极限值唯一.证:假设极限不惟一,则至少存在两个数A B ≠,使()()0lim ,lim x x x x f x A f x B →→==同时成立,由定义10,0εδ∀>∃>,当o01U (,)x x δ∈时()f x A ε−<,且20δ∃>,当o02U (,)x x δ∈时()f x B ε−<。
数列极限计算练习题数列是数学中的一个重要概念,它是由一系列有序的数字组成。
而数列极限是指数列随着项数增加,逐渐趋向于某个确定的值。
在数学中,我们经常需要计算数列的极限,这是一个能够帮助我们深入理解数列性质的重要工具。
本文将为您提供一些数列极限计算的练习题,希望可以帮助您提升数列极限计算的能力。
练习一:求极限1. 设数列 $a_n = \frac{n+3}{n+1}$,求 $\lim_{n \to \infty} a_n$。
解析:为了求得该数列的极限,我们可以对数列进行简化,将其化简为一个更容易计算的形式。
通过观察数列,我们可以发现分子和分母的最高次数都为$n$,因此我们可以用$n$去除分子和分母,得到:$a_n = \frac{n+3}{n+1} = \frac{1+\frac{3}{n}}{1+\frac{1}{n}}$当$n$趋近于无穷大时,分数$\frac{3}{n}$和$\frac{1}{n}$的值都趋近于0,因此我们可以将它们忽略不计。
最后,我们得到:$\lim_{n \to \infty} a_n = \frac{1+0}{1+0} = 1$因此,数列 $a_n$ 的极限为1。
2. 设数列 $b_n = \frac{n^2 - 2n + 1}{n^2 + 1}$,求 $\lim_{n \to \infty} b_n$。
解析:我们可以将分子和分母进行因式分解,得到:$b_n = \frac{(n-1)^2}{n^2+1}$当$n$趋近于无穷大时,$(n-1)^2$和$n^2$的值都趋近于无穷大,因此我们可以将它们忽略不计。
最后,我们得到:$\lim_{n \to \infty} b_n = \frac{\infty}{\infty}$对于这种形式的极限计算,我们可以利用洛必达法则。
洛必达法则可以用于解决形式为$\frac{\infty}{\infty}$的不定型,即分子和分母都趋近于无穷大的情况。
1、用数列极限的N ε-定义证明下列极限:
1)2
24lim 4n n n n
→∞=- 证明:0>∀ε
224441
n n n n -=-- 取4
1N ε=+,当N n >时,恒有2
244n n n ε-<- 所以2
24lim 4n n n n
→∞=- 2)()
01lim =-+∞→n n n 证明:0>∀ε
n n n n n 11101<++=
--+ 取21ε=N ,当N n >时,恒有ε<--+01n n
所以()
01lim =-+∞→n n n 3)2
lim 03
n n n →∞= 证明:0>∀ε,无妨设3n >
()()()222236603212311n n n n
n n n n n C n n n -<=<=<---+ 取6
3N ε=+,当n N >时,恒有2
03n n ε-< 所以2
lim 03
n n n →∞=。
2、若lim n n u A →∞=,证明lim n n u A →∞
=。
并举例说明器逆命题不成立。
证明:0>∀ε,因为lim n n u A →∞
=,所以存在0>N ,当N n >时,恒有 n u A ε-<
此时恒有
n n u A u A ε-≤-< 所以lim n n u A →∞
=。
例:()11lim =-∞→n n ,但()n
n 1lim -∞
→不存在。
3、设数列{}n u 有界,又lim 0n n v →∞=,证明:lim 0n n n u v →∞=。
证明:因为{}n u 有界,所以存在正数M ,对任给的n 有
M x n ≤
对任给的0>ε,由于lim 0n n v →∞
=,一定存在0>N ,当N n >时,恒有 0n n v v ε-=<
此时恒有
0n n n n u v u v M ε-=<⋅
(注意εM 也可以取到任意小的正数)
因此lim 0n n n u v →∞
=。
4、设{}{}n n v u ,两个数列有相同的极限A ,求证:若n n n v u x -=,则0lim =∞→n n x 。
证明:0>∀ε,
因为A u n n =∞
→lim ,所以存在01>N ,当1N n >时,恒有 ε<-A u n
又因为A v n n =∞
→lim ,所以存在02>N ,当2N n >时,恒有 ε<-A v n
取{}21,max N N N =,当N n >时
ε20<-+-≤+--=-A v A u A A v u x n n n n n
(注意ε2也可以取到任意小的正数)
所以0lim =∞
→n n x 5、若lim 0n n u A →∞
=>,
1)证明存在0N >,当n N >时有02n A u >>。
证明:取2
A ε=,因为lim n n u A →∞=,所以存在正数N ,当N n >时有 2
n A u A ε-<= 即有
0222n n A A A u A u -<-<⇒>> 2)用数列极限的定义证明1lim 1n n n
u u +→∞=。
证明:0ε∀>,因为lim n n u A →∞
=,存在10N >,当1n N >时有 4
n A u A ε-< 再由1)可得存在20N >,当2n N >时有02n A u >
> 取{}12max ,N N N =,当n N >时,
111414
2
n n n n n n n u u u A u A u A A u u A εε+++--+--=<<⋅= 所以1lim 1n n n u u +→∞=。