A1(- a,0),A2(a,0)
e c (e 1) a
y b x a
例3:
x2 y2 1 16 9
1、双曲线 9x2-16y2=144的实半轴长
等于 4 虚半轴长等于 3 顶点坐
标是 4,0 渐近线方是y
3 4
x (或 x
4
y
.3
0)
5
离心率e= 4 。
2、离充心要率e=条件2 是。双(曲用线“为充等分轴条双件曲”线“的必要 条件”“充要条件”填空。)
双曲线定义的简单几何性质
定义
图象
方程 范围 对称性 顶点 离心率 渐近线
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
y
y
M
M
F2
F1
o
F2
x
x
F1
x2 a2
y2 b2
1
x≤-a或x≥a
y2 a2
x2 b2
1
y≤-a或y≥a
关于坐标轴、原点对称(实轴、虚轴、中心)
(-a, 0) (a, 0)
法二 由双曲线的渐近线方程为 y=±12x, 可设双曲线方程为x222-y2=λ(λ≠0), ∵A(2,-3)在双曲线上, ∴2222-(-3)2=λ,即 λ=-8. ∴所求双曲线的标准方程为y82-3x22 =1.
5 离心率
与椭圆类似,双曲线的焦距与实轴长的比 c , a
叫做双曲线的离心率.因为c a 0,所以双
2 2
y2 b2
1
渐进线方程
k
b a
B2
b
k
y
(a,b)
b a
yb x a
可由双曲线