物理专题三考点三 连接体问题含解析
- 格式:doc
- 大小:1.31 MB
- 文档页数:34
高中物理复习--连接体问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理复习--连接体问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理复习--连接体问题(word版可编辑修改)的全部内容。
连接体运动问题一、教法建议【解题指导】“连接体运动”是在生活和生产中常见的现象,也是运用牛顿运动定律解答的一种重要题型。
在“连接体运动”的教学中,需要给学生讲述两种解题方法──“整体法"和“隔离法”。
如图1—15所示:把质量为M 的的物体放在光滑..的水平..高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m 的物体连接起来,求:物体M 和物体m 的运动加速度各是多大?⒈ “整体法”解题采用此法解题时,把物体M 和m 看作一个整体..,它们的总质量为(M+m )。
把通过细绳连接着的M 与m 之间的相互作用力看作是内力..,既然水平高台是光滑无阻力的,那么这个整体所受的外力..就只有mg 了。
又因细绳不发生形变,所以M 与m 应具有共同的加速度a 。
现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M 和物体m 所共有的加速度为: g mM m a += ⒉ “隔离法”解题采用此法解题时,要把物体M 和m 作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M与m 之间的相互..作用力T 必须标出,而且对M 和m 单.独.来看都是外力..(如图1—16所示)。
根据牛顿第二定律对物体M 可列出下式:T=Ma ①根据牛顿第二定律对物体m 可列出下式:mg-T=ma ②将①式代入②式:mg —Ma=ma mg=(M+m)a所以物体M 和物体m 所共有的加速度为:g m M m a += 最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M 和m ,已知M 〉m ,可忽略阻力,求物体M 和m 的共同加速度a 。
高三物理连接体试题答案及解析1.如图所示,在倾角为的光滑斜面上端系有一劲度系数为200N/m的轻质弹簧,弹簧下端连一个质量为2kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4m/s2的加速度沿斜面向下做匀加速运动,取,则A.小球从一开始就与挡板分离B.小球速度最大时与挡板分离C.小球向下运动0.01 m时与挡板分离D.小球向下运动0.02m时速度最大【答案】C【解析】设球与挡板分离时位移为,经历的时间为,从开始运动到分离的过程中,m受竖直向,沿斜面向上的挡板支持力和弹簧弹力.根据牛顿第二下的重力,垂直斜面向上的支持力FN定律有:,保持a不变,随着的增大,减小,当m与挡板分离时,减小到零,则有:,解得:,即小球向下运动0.01m时与挡板分离,故A错误,C正确.球和挡板分离前小球做匀加速运动;球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大.故B错误.球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,此时物体所受合力为零.即:,解得:,由于开始时弹簧处于原长,所以速度最大时小球向下运动的路程为0.05m,故D错误.故选C.【考点】本题考查了牛顿第二定律、胡克定律.2.如图所示,水平面内两根光滑的足够长平行金属导轨,左端与电阻R相连接,匀强磁场B竖直向下分布在导轨所在的空间内,一定质量的金属棒垂直于导轨并与导轨接触良好。
若对金属棒施加一个水平向右的外力F,使金属棒从a位置由静止开始向右做匀加速运动。
若导轨与金属棒的电阻不计,则下列图像(金属棒产生的电动势E、通过电阻R的电量q、电阻R消耗的功率P、外力F)正确的是【答案】BD【解析】金属棒从静止开始匀加速直线运动,设加速度为,则金属棒速度为,导体棒切割磁感线产生的感应电动势,感应电动势与时间成正比,图像为一条倾斜的直线,选项A错。
通过电阻的电荷量,电荷量与时间平方成正比,选项B对。
电阻R消耗的电功率,电功率同样与时间平方成正比,选项C 错。
(一)系统机械能守恒的三类连接体模型连接体问题是力学部分的难点,本书通过对近几年高考题及各地模拟题的深入研究,总结出以下三类可以利用系统机械能守恒来快速解题的连接体模型。
速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。
2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。
这类题目的典型特点是系统不受摩擦力作用。
[例1]如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上。
现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。
已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计。
开始时整个系统处于静止状态;释放A后,A沿斜面下滑至速度最大时,C恰好离开地面。
求:(1)斜面的倾角α;(2)A球获得的最大速度v m。
[审题建模](1)细线不可伸长,A、B两球速率一定相等,但B与C球以弹簧相连,速率一般不同。
(2)弹簧的弹性势能与弹簧的形变量大小有关,无论弹簧处于伸长状态还是压缩状态。
【解析】(1)由题意可知,当A沿斜面下滑至速度最大时,C恰好离开地面。
A的加速度此时为零由牛顿第二定律得: 4mg sin α-2mg =0 则:sin α=12,α=30°。
(2)由题意可知,A 、B 两小球及轻质弹簧组成的系统在初始时和A 沿斜面下滑至速度最大时的机械能守恒,同时弹簧的弹性势能相等, 故有:2mg =k Δx4mg Δx sin α-mg Δx =12(5m )v m 2得:v m =2gm 5k。
【答案】 (1)30° (2)2gm 5k[集训冲关]1.如图所示,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上半径为R 的光滑圆柱,A 的质量为B 的两倍。
微专题21 三种〞连接体模型“的解题规律题目类型1.弹力连接(以轻绳连接或直接接触):假设加速度一样,各个物体间弹力与“其带动的物体质量〞成正比;直接接触的连接体往往还涉与“要别离还没分〞的临界状态.2.弹簧连接:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.3.摩擦连接:连接体靠静摩擦力或滑动摩擦力连接(带动),由静摩擦力带动时连接体相对静止,加速度一样;静摩擦力达到最大静摩擦力时是“要滑还没滑〞的临界状态.解题方法整体法、隔离法交替运用.假设连接体内各物体具有一样的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取适宜的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力〞.1.(多项选择)(2019·辽宁沈阳市第一次质检)如图1所示,甲、乙两物体靠在一起,放在光滑的水平面上,在水平力F1和F2共同作用下,一起从静止开始运动,F1>F2,两物体运动一段时间后( )图1A.假设突然撤去F1,甲的加速度一定减小B.假设突然撤去F1,甲、乙间的作用力减小C.假设突然撤去F2,乙的加速度一定增大D.假设突然撤去F2,甲、乙间的作用力增大2.(2019·河南示范性高中上学期期终)如图2所示,A、B两一样的木箱(质量不计)用水平细绳连接放在水平地面上,当两木箱内均装有质量为m的沙子时,用水平力F拉A木箱,使两木箱一起做匀加速直线运动,细绳恰好不被拉断.在不改变拉力的情况下,为使两木箱一次能运送更多的沙子,如下方法可行的是(加沙子后两木箱均能被拉动)( )图2A.只在A木箱内加沙子B.只在B木箱内加沙子C.A木箱内参加质量为m的沙子,B木箱内参加质量为2m的沙子D .A 木箱内参加质量为2m 的沙子,B 木箱内参加质量为3m 的沙子3.(多项选择)如图3甲所示,在光滑水平面上叠放着A 、B 两物体.现对A 施加水平向右的拉力F ,通过传感器可测得A 的加速度a 随拉力F 变化的关系如图乙所示.重力加速度g =10m/s 2,如下说法正确的答案是(最大静摩擦力等于滑动摩擦力)( )图3A .A 的质量是5kgB .B 的质量是5kgC .A 、B 之间的动摩擦因数是0.4D .A 、B 之间的动摩擦因数是0.84.如图4所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m 的小球,小球上下振动时,框架始终没有跳起,重力加速度为g .当框架对地面压力为零瞬间,小球的加速度大小为( )图4A .g B.M -m m g C .0D.M +mmg 5.(2020·湖南长沙市模拟)如图5所示,光滑水平面上,质量分别为m 、M 的木块A 、B 在水平恒力F 作用下一起以加速度a 向右做匀加速直线运动,木块间的水平轻质弹簧劲度系数为k ,原长为L 0,如此此时木块A 、B 间的距离为( )图5A .L 0+Ma kB .L 0+ma kC .L 0+MF k M +m D .L 0+F -mak6.(2020·河南新乡市模拟)如图6所示,粗糙水平面上放置B 、C 两物体,A 叠放在C 上,A 、B 、C 的质量分别为m 、2m 和3m ,物体B 、C 与水平面间的动摩擦因数一样,其间用一不可伸长的水平轻绳相连,轻绳能承受的最大拉力为T .现用水平拉力F 拉物体B ,使三个物体以同一加速度向右运动,如此( )图6A .此过程中物体C 受五个力作用B .当F 逐渐增大到T 时,轻绳刚好被拉断C .当F 逐渐增大到1.5T 时,轻绳刚好被拉断D .假设水平面光滑,如此绳刚断时,A 、C 间的摩擦力为T67.如图7所示,物块A 和B 的质量分别为4m 和m ,开始A 、B 均静止,细绳拉直,在竖直向上拉力F =6mg 作用下,动滑轮竖直向上加速运动,动滑轮质量忽略不计,动滑轮半径很小,不考虑绳与滑轮之间的摩擦,细绳足够长,在滑轮向上运动过程中,物块A 和B 的加速度分别为( )图7A .a A =12g ,a B =5gB .a A =a B =15gC .a A =14g ,a B =3gD .a A =0,a B =2g8.(多项选择)(2019·河北省“五个一名校联盟〞第一次诊断)小物块m 与各面均光滑的斜面体M ,叠放在光滑水平面上,如图8所示,在水平力F 1(图甲)作用下保持相对静止,此时m 、M 间作用力为N 1;在水平力F 2(图乙)作用下保持相对静止,此时m 、M 间作用力为N 2.如此如下说法正确的答案是( )图8A .假设m =M ,如此有F 1=F 2B .假设m =M ,如此有N 1>N 2C .假设m <M ,如此有F 1<F 2D .假设m <M ,如此有N 1=N 29.(多项选择)(2020·湖北武汉市调研)如图9所示,光滑水平桌面放置着物块A ,它通过轻绳和轻质光滑滑轮悬挂着物块B .A 的质量为m ,B 的质量为3m ,重力加速度大小为g .静止释放物块A 、B 后( )图9A .一样时间内,A 、B 运动的路程之比为2∶1 B .物块A 、B 的加速度之比为1∶1C .细绳的拉力为6mg7D .当B 下落高度h 时,速度为2gh 510.(2019·福建宁德市上学期期末质量检测)如图10所示,在光滑的水平面上有一段长为L 、质量分布均匀的绳子,绳子在水平向左的恒力F 作用下做匀加速直线运动.绳子上某一点到绳子右端的距离为x ,设该处的张力为T ,如此能正确描述T 与x 之间的关系的图像是( )图1011.(2019·福建泉州市期末质量检查)如图11所示,“复兴号〞动车组共有8节车厢,每节车厢质量m =18t ,第2、4、5、7节车厢为动力车厢,第1、3、6、8节车厢没有动力.假设“复兴号〞在水平轨道上从静止开始加速到速度v =360km/h ,此过程视为匀加速直线运动,每节车厢受到f=1.25×103N的阻力,每节动力车厢的牵引电机提供F=4.75×104N的牵引力.求:图11(1)该过程“复兴号〞运动的时间;(2)第4节车厢和第5节车厢之间的相互作用力的大小.12.(2019·湖南衡阳市第二次模拟)如图12甲所示,在水平地面上有一质量为m1=1kg的足够长的木板,其上叠放一质量为m2=2kg的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等,现给木块施加随时间t增大的水平拉力F=3t(N),重力加速度大小g=10m/s2.图12(1)求木块和木板保持相对静止的时间t1;(2)t=10s时,两物体的加速度各为多大;(3)在图乙中画出木块的加速度随时间変化的图像(取水平拉力F的方向为正方向,只要求画图,不要求写出理由与演算过程)答案精析1.BC [一起运动时,整体的加速度为:a =F 1-F 2m 1+m 2; 对乙分析,如此甲、乙之间的作用力为:N -F 2=m 2a ,解得N =m 1F 2+m 2F 1m 1+m 2;突然撤去F 1,如此整体的加速度a 1=F 2m 1+m 2,a 1不一定大于a ,甲、乙之间的作用力N 1=m 1F 2m 1+m 2<N ,故A 错误,B 正确;突然撤去F 2,如此整体的加速度a 2=F 1m 1+m 2,如此a 2>a ,即加速度增大,甲、乙之间的作用力为:N 2=m 2F 1m 1+m 2<N ,应当选项C 正确,D 错误.] 2.A [对A 、B 整体,由牛顿第二定律:F -μ(m A +m B )g =(m A +m B )a ;对木箱B :T -μm B g =m B a ;解得T =m Bm A +m BF ,可知当A 木箱内参加沙子的质量大于B 木箱内参加沙子的质量时,细绳的拉力减小,故A 正确,B 、C 、D 错误.]3.BC [拉力F 很小时,A 、B 两物体保持相对静止,以一样的加速度运动,后来B 在A 上滑动.当拉力F 1=60N 时,A 物体加速度a 1=4m/s 2,两物体恰好要相对滑动,这时A 、B 间的摩擦力是最大静摩擦力,根据牛顿第二定律,对B 有:μm B g =m B a 1① 对A 有:F 1-μm B g =m A a 1②当拉力F 2=100N 时,A 物体加速度a 2=8m/s 2,两物体发生相对滑动,这时A 、B 间是滑动摩擦力,根据牛顿第二定律,对A 有:F 2-μm B g =m A a 2③由①②③解得:m A =10kg ,m B =5kg ,μ=0.4,故B 、C 正确,A 、D 错误.]4.D [以框架为研究对象进展受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F +mg =ma ,联立可解得,小球的加速度大小为a =M +mmg ,应当选项D 正确.] 5.B [以A 、B 整体为研究对象,加速度为:a =F M +m,隔离A 木块,弹簧的弹力:F 弹=ma=k Δx ,如此弹簧的长度L =L 0+ma k =L 0+mFk M +m,应当选B.]6.C [对A ,A 受重力、支持力和向右的静摩擦力作用,可以知道C 受重力、A 对C 的压力、地面的支持力、绳子的拉力、A 对C 的摩擦力以与地面的摩擦力六个力作用,故A 错误;对整体分析,整体的加速度a =F -μ·6mg 6m =F6m-μg ,隔离法对A 、C 分析,根据牛顿第二定律得,T -μ·4mg =4ma ,计算得出T =23F ,当F =1.5T 时,轻绳刚好被拉断,故B 错误,C正确;水平面光滑,绳刚断时,对A 、C 分析,加速度a ′=T4m,隔离对A 分析,A 的摩擦力f =ma ′=T4,故D 错误.]7.D [对滑轮由牛顿第二定律得F -2T =m ′a ,又滑轮质量m ′忽略不计,故m ′=0,所以T =F 2=6mg 2=3mg ,对A 由于T <4mg ,故A 静止,a A =0,对B 有a B =T -mg m =3mg -mg m=2g ,故D 正确.]8.ACD [由整体法可知,甲图中整体的加速度:a 1=F 1M +m,乙图中整体的加速度:a 2=F 2M +m;对甲图,隔离M ,如此N 1sin θ=Ma 1,隔离m :N 1cos θ=mg ,解得a 1=mMg tan θ;F 1=(M +m )a 1=m M (M +m )g tan θ;N 1=mg cos θ;对乙图中的m ,如此:N 2sin θ=mg tan θ=ma 2,解得:N 2=mgcos θ;F 2=(M +m )a 2=(M +m )g tan θ;假设m =M ,如此有F 1=F 2;假设m <M ,如此有F 1<F 2,选项A 、C 正确;无论m 和M 大小关系如何,都有N 1=N 2,选项B 错误,D 正确.]9.AC [根据动滑轮的特点可知,一样时间内,A 、B 运动的路程之比为2∶1,选项A 正确;根据s =12at 2可知,物块A 、B 的加速度之比为2∶1,选项B 错误;设细绳的拉力为T ,B 的加速度为a ,如此对A :T =m ·2a ;对B :3mg -2T =3ma ;解得a =37g ,T =67mg ,选项C 正确;当B 下落高度h 时,速度为v =2ah =67gh ,选项D 错误.] 10.A [设绳子单位长度质量为m ,对整体分析有:F =Lma ,如此对x 分析可知:T =xma ,联立解得:T =xF L,故可知T 与x 成正比,故A 正确.] 11.(1)80s (2)0解析 (1)以动车组为研究对象,由牛顿第二定律:4F -8f =8ma 动车组做匀加速直线运动,如此v =at 解得t =80s(2)以前4节车厢为研究对象,假设第4、5节车厢间的作用力为N,如此由牛顿第二定律:2F-4f+N=4ma解得N=0.12.(1)4s (2)3m/s212m/s2(3)见解析图解析(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有被拉动,处于静止状态,当木块和木板一起运动时,对m1:f max-μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max-μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t得:t=4s(2)t=10s时,两物体已相对运动,如此有:对m1:μ1m2g-μ2 (m1+m2)g=m1a1,解得:a1=3m/s2对m2:F-μ1m2g=m2a2,F=3t=30N,解得:a2=12m/s2(3)图像过(1,0)、(4,3)、(10,12)图像如下列图.。
高三物理连接体试题答案及解析1.(13分)如图所示,在粗糙水平台阶上静止放置一质量m=1.0kg的小物块,它与水平台阶表面的动摩擦因数μ=0.25,且与台阶边缘O点的距离s=5m.在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R=m,今以O点为原点建立平面直角坐标系。
现用F=5N的水平恒力拉动小物块,已知重力加速度.(1)为使小物块不能击中挡板,求拉力F作用的最长时间;(2)若小物块在水平台阶上运动时,水平恒力一直作用在小物块上,当小物块过O点时撤去拉力,求小物块击中挡板上的位置的坐标.【答案】(1);(2)x=5m,y=5m【解析】(1)为使小物块不会击中挡板,拉力F作用最长时间t时,小物块刚好运动到O点.由牛顿第二定律得:(1分)解得:(1分)减速运动时的加速度大小为:(1分)由运动学公式得:(1分)而(1分)解得:(1分)(2)水平恒力一直作用在小物块上,由运动学公式有:(1分)解得小物块到达O点时的速度为:(1分)小物块过O点后做平抛运动.水平方向:(1分)竖直方向:(1分)又(2分)解得位置坐标为:x=5m,y=5m (1分)【考点】牛顿第二定律,平抛运动2.(16分)电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的本质联系。
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即,这就是法拉第电磁感应定律。
(1)如图所示,把矩形线框abcd放在磁感应强度为B的匀强磁场里,线框平面跟磁感线垂直。
设线框可动部分ab的长度为L,它以速度v向右匀速运动。
请根据法拉第电磁感应定律推导出闭合电路的感应电动势E=BLv。
(2)两根足够长的光滑直金属导轨平行放置在倾角为θ的绝缘斜面上,两导轨间距为L。
两导轨间接有阻值为R的电阻。
一根质量为m的均匀直金属杆MN放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B匀强磁场中,磁场方向垂直于斜面向上。
导轨和金属杆的电阻可忽略。
让金属杆MN由静止沿导轨开始下滑。
考点三连接体问题基础点知识点1连接体1.定义:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。
连接体一般具有相同的运动情况(速度、加速度)。
如下图所示:2.处理连接体问题的方法:整体法与隔离法,要么先整体后隔离,要么先隔离后整体。
(1)整体法是指系统内(即连接体内)物体间无相对运动时(具有相同加速度),可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,对整体列方程求解的方法。
整体法可以求系统的加速度或外界对系统的作用力。
(2)隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析其受力情况,再列方程求解的方法。
隔离法适合求系统内各物体间的相互作用力或各个物体的加速度。
3.整体法、隔离法的选取原则(1)整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
(3)整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。
即“先整体求加速度,后隔离求内力”。
知识点2临界与极值1.临界问题物体由某种物理状态转变为另一种物理状态时,所要经历的一种特殊的转折状态,称为临界状态。
这种从一种状态变成另一种状态的分界点就是临界点,此时的条件就是临界条件。
在应用牛顿运动定律解决动力学的问题中,当物体的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”“最小”“刚好”“恰好出现”或“恰好不出现”等词语时,常常会涉及临界问题。
动力学连接体问题和临界问题1、动力学中的连接体模型,学会使用整体法与隔离法分析。
2、掌握动力学的临界分析。
一、动力学的连接体问题1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力.3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形.4.整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析.二、动力学的临界问题1.临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态.2.关键词语:在动力学问题中出现的“最大”“最小”“刚好”“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件.3.临界问题的常见类型及临界条件:(1)接触与脱离的临界条件:两物体相接触(或脱离)的临界条件是弹力为零.(2)相对静止或相对滑动的临界条件:静摩擦力达到最大静摩擦力.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是实际张力等于它所能承受的最大张力,绳子松弛的临界条件是绳上的张力为零.(4)加速度最大与速度最大的临界条件:当所受合力最大时,具有最大加速度;当所受合力最小时,具有最小加速度.当出现加速度为零时,物体处于临界状态,对应的速度达到最大值或最小值.4.解答临界问题的三种方法(1)极限法:把问题推向极端,分析在极端情况下可能出现的状态,从而找出临界条件.(2)假设法:有些物理过程没有出现明显的临界线索,一般用假设法,即假设出现某种临界状态,分析物体的受力情况与题设是否相同,然后再根据实际情况处理.(3)数学法:将物理方程转化为数学表达式,如二次函数、不等式、三角函数等,然后根据数学中求极值的方法,求出临界条件.题型1动力学的连接体问题[例题1](2023秋•密云区期末)如图是采用动力学方法测量空间站质量的原理图。
考点三连接体问题
基础点
知识点1 连接体
1.定义:多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的物体系统称为连接体。
连接体一般具有相同的运动情况(速度、加速度)。
如下图所示:
2.处理连接体问题的方法:整体法与隔离法,要么先整体后隔离,要么先隔离后整体。
(1)整体法是指系统内(即连接体内)物体间无相对运动时(具有相同加
速度),可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,对整体列方程求解的方法。
整体法可以求系统的加速度或外界对系统的作用力。
(2)隔离法是指当我们所研究的问题涉及多个物体组成的系统时,需要求连接体内各部分间的相互作用力,从研究方便出发,把某个物体从系统中隔离出来,作为研究对象,分析其受力情况,再列方程求解的方法。
隔离法适合求系统内各物体间的相互作用力或各个物体的加速度。
3.整体法、隔离法的选取原则
(1)整体法的选取原则
若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法的选取原则
若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
(3)整体法、隔离法的交替运用
若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。
即“先整体求加速度,后隔离求内力”。
知识点2 临界与极值
1.临界问题
物体由某种物理状态转变为另一种物理状态时,所要经历的一种特殊的转折状态,称为临界状态。
这种从一种状态变成另一种状态的分界点就是临界点,此时的条件就是临界条件。
在应用牛顿运动定律解决动力学的问题中,当物体的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”“最小”“刚
好”“恰好出现”或“恰好不出现”等词语时,常常会涉及临界问题。
2.产生临界(极值)问题的条件
(1)接触与脱离的临界(极值)条件:两物体相接触或脱离,临界(极值)条件是:弹力F N=0。
(2)相对滑动的临界(极值)条件;两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界(极值)条件是:静摩擦力达到最大值。
(3)绳子断裂与松弛的临界(极值)条件:绳子所能承受的张力是有限的,绳子断与不断的临界(极值)条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界(极值)条件是F T=0。
(4)加速度最大与速度最大的临界(极值)条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。
当出现速度有最大值或最小值的临界(极值)条件时,物体处于临界(极值)状态,所对应的速度便会出现最大值或最小值。
重难点
一、连接体问题
1.常见类型。