高中物理连接体问题
- 格式:ppt
- 大小:521.50 KB
- 文档页数:4
专题16 连接体问题常考点连接体问题分类及解题方法分析【典例1】如图所示,光滑水平桌面上的物体B质量为m2,系一细绳,细绳跨过桌沿的定滑轮后悬挂质量为m1的物体A,先用手使B静止(细绳质量及滑轮摩擦均不计)。
(1)求放手后A、B一起运动中绳上的张力F T。
(2)若在B上再叠放一个与B质量相等的物体C,绳上张力就增大到F T,求m1:m2。
解:(1)对A有:m1g﹣F T=m1a1对B有:F T=m2a1则F T=g(2)对A有:m1g﹣F T2=m1a2对B+C有:F T2=2m2a2则F T2=g由F T2=F T得:g=所以m1:m2=2:1答:(1)放手后A、B一起运动中绳上的张力为g(2)两物体的质量之比为2:1。
【典例2】(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。
支架上用细线悬挂质量为m的小球,当小球与滑块相对静止后,细线方向与竖直方向的夹角为α,重力加速度为g,则()A.若α=θ,小球受到的拉力为mgcosθB.若α=θ,滑块的加速度为gtanθC.若α>θ,则斜面粗糙D.若α=θ,则斜面光滑【解析】A、若α=θ,则细线与斜面垂直,小球受到的重力和细线拉力的合力沿斜面向下,如图所示,沿细线方向根据平衡条件可得小球受到的拉力为F=mgcosθ,故A正确;B、若α=θ,滑块的加速度与小球的加速度相同,对小球根据牛顿第二定律可得:mgsinθ=ma,解得:a=gsinθ,故B错误;CD、根据B选项可知,若α=θ,整体的加速度为a=gsinθ;以整体为研究对象,沿斜面方向根据牛顿第二定律可得:Mgsinθ﹣f=Ma,解得:f=0;若斜面粗糙,则整体的加速度减小,则α<θ。
【典例3】在光滑的水平地面上有两个A完全相同的滑块A、B,两滑块之间用原长为l0的轻质弹簧相连,在外力F1、F2的作用下运动,且F1>F.以A、B为一个系统,如图甲所示,F1、F向相反方向拉A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0+△l1),系统的加速度大小为a1;如图乙所示,F1、F2相向推A、B两个滑块,当运动达到稳定时,弹簧的长度为(l0﹣△l2),系统的加速度大小为a2.则下列关系式正确的是()A.△l1=△l2,a1=a2B.△l1>△l2,a1=a2C.△l1=△l2,a1>a2D.△l1<△l2,a1<a2【解析】A、B完全相同,设它们的质量都是m,由牛顿第二定律得:对A、B系统:F1﹣F2=2ma1,F1﹣F2=2ma2,对A:F1﹣k△l1=ma1,F1﹣k△l2=ma2,解得:a1=a2,△l1=△l2。
专题:连接体问题题型一、加速度相同的连接体题型二、加速度不同的连接体题型三:临界(极值)类问题题型一、加速度相同的连接体1.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连。
当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a 2。
则有( )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 2答案 B解析 对a 、b 物体及弹簧整体分析,有:a 1=F -m 1+m 2g m 1+m 2=F m 1+m 2-g ,a 2=F m 1+m 2, 可知a 1<a 2,再隔离b 分析,有:F 1-m 2g =m 2a 1,解得:F 1=m 2F m 1+m 2, F 2=m 2a 2=m 2F m 1+m 2, 可知F 1=F 2,再由胡克定律知,x 1=x 2。
所以B 选项正确。
2.(多选)如图所示,光滑的水平地面上有三块木块a 、b 、c ,质量均为m ,a 、c 之间用轻质细绳连接。
现用一水平恒力F 作用在b 上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一木块上面。
系统仍加速运动,且始终没有相对滑动。
则在粘上橡皮泥并达到稳定后,下列说法正确的是 ( )A .无论粘在哪块木块上面,系统的加速度一定减小B .若粘在a 木块上面,绳的张力减小,a 、b 间摩擦力不变C .若粘在b 木块上面,绳的张力和a 、b 间摩擦力一定都减小D .若粘在c 木块上面,绳的张力和a 、b 间摩擦力一定都增大答案 ACD解析 无论粘在哪块木块上面,系统质量增大,水平恒力F 不变,对整体由牛顿第二定律得系统的加速度一定减小,选项A 正确;若粘在a 木块上面,对c 有F T c =ma ,a 减小,故绳的张力减小,对b 有F -F f =ma ,故a 、b 间摩擦力增大,选项B 错误;若粘在b 木块上面,对c 有F T c =ma ,对a 、c 整体有F f =2ma ,故绳的张力和a 、b 间摩擦力一定都减小,选项C 正确;若粘在c 木块上面,对b 有F -F f =ma ,则F f =F -ma ,a 减小,F f 增大,对a 有F f -F T c =ma ,则F T c =F f -ma ,F f 增大,a 减小,F T c 增大,选项D 正确。
高中物理转盘连接体问题高中物理中的转盘连接体问题是指有两个或多个转盘通过轴连接在一起的物理问题。
这种问题一般涉及到力的传递、转动惯量和角加速度等概念。
下面将详细讨论该问题。
首先,我们来考虑两个转盘通过轴连接在一起的情况。
设转盘1的转动惯量为I₁,转盘2的转动惯量为I₂,通过轴连接的转动惯量为I₃。
假设外力作用在转盘1上,转盘2无外力作用。
根据动量守恒定律,外力对转盘1的扭矩τ₁等于转盘1的转动惯量I₁乘以角加速度α:τ₁ = I₁α₁根据转盘2的转动惯量和角加速度,可以得到转盘2的角加速度α₂:τ₂ = I₂α₂由于转盘1和转盘2通过轴连接在一起,因此它们的角加速度相等:α₁ = α₂ = α而两个转动物体的牵引力的作用点重合,所以τ₁ = τ₂,从而有:I₁α = I₂α由此得到:I₁α = I₂α(I₁ + I₂)α = 0当(I₁ + I₂) ≠ 0时,上式成立的唯一解是α = 0,即两个转盘的角加速度为0.这说明,当通过轴连接的转动惯量不为零时,两个转盘的角加速度相等且均为零,即它们将保持静止。
对于多个转盘通过轴连接在一起的情况,同样可以推导类似的结论。
假设第i个转盘的转动惯量为Iᵢ,通过轴连接的转动惯量为Iₙ,其中n为转盘的个数。
根据动量守恒定律和转动的叠加原理,可以得到:τ₁ + τ₂ + ... + τₙ = I₁α + I₂α + ... + Iₙα(I₁ + I₂ + ... + Iₙ)α = 0当(I₁ + I₂ + ... + Iₙ) ≠ 0时,上式成立的唯一解是α = 0,即所有转盘的角加速度为零。
这说明,当通过轴连接的转动惯量之和不为零时,所有转盘的角加速度均为零,它们将保持静止。
总结起来,转盘连接体问题中,通过轴连接的转动惯量之和为零时,转盘将保持静止;当转动惯量之和不为零时,转盘将保持静止。
这是由于转盘的转动惯量和角加速度之间存在一种固定的关系,通过轴连接的转动惯量之和可以看作是一个整体的转动惯量,在外力作用下,整体将保持静止。
物理的连接体问题
物理的连接体问题是指在物理学中探讨物体之间如何相互连接、交互作用以及受力等问题。
在物理学中,物体之间的连接常常涉及到物体之间的接触、插入、固定等方式。
例如,一个简单的连接体问题可以是两个弹簧的连接方式,或者两个物体之间的摩擦力如何影响它们的运动。
连接体问题可以通过分析物体之间的接触面积、形状、材质等因素来研究。
例如,接触面积的大小决定了接触力的大小,形状的不匹配可能导致接触面不完全,从而影响连接体的稳定性。
此外,连接体问题还涉及到物体之间的受力情况。
通过分析连接体上的受力情况,可以研究物体之间的力的平衡和不平衡情况,以及力的传递和转化等问题。
为了解决连接体问题,物理学采用了多种分析方法和工具,如力学、力的平衡和受力分析、力矩分析、静力学、材料力学等。
总之,连接体问题是物理学中研究物体之间连接、交互作用和受力等问题的重要内容,对于理解物体之间的相互作用和力的传递具有重要意义。
在研究静力学问题或力和运动的关系问题时,常会涉及相互关联的物体间的相互作用问题,即“连接体问题”。
连接体问题一般是指由两个或两个以上物体所构成的有某种关联的系统。
研究此系统的受力或运动时,求解问题的关键是研究对象的选取和转换。
一般若讨论的问题不涉及系统内部的作用力时,可以以整个系统为研究对象列方程求解–“整体法”;若涉及系统中各物体间的相互作用,则应以系统某一部分为研究对象列方程求解–“隔离法”。
这样,便将物体间的内力转化为外力,从而体现其作用效果,使问题得以求解,在求解连接问题时,隔离法与整体法相互依存,交替使用,形成一个完整的统一体,分别列方程求解。
一、在静力学中的应用在用“共点力的平衡条件”求解问题时,大多数同学感到困难的就是研究对象的选取。
整体法与隔离法是最常用的方法,灵活、交替的使用这两种方法,就可化难为易,化繁为简,迅速准确地解决此类问题。
例1、在粗糙的水平面上有一个三角形木块,在它的两个粗糙的斜面上分别放置两个质量为m1和m2的木块,,如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A.在摩擦力作用,方向水平向右;B.有摩擦力作用,方向水平向左;C.有摩擦力作用,但方向不确定;D.以上结论都不对。
图1解析:这个问题的一种求解方法是:分别隔离m1、m2和三角形木块进行受力分析,利用牛顿第三定律及平衡条件讨论确定三角形木块与粗糙水平面间的摩擦力。
采用整体法求解更为简捷:由于m1、m2和三角形木块相对静止,故可以看成一个不规则的整体,以这一整体为研究对象,显然在竖直平面上只受重力和支持力作用,很快选出答案为D。
例2、如图2所示,重为G的链条(均匀的),两端用等长的轻绳连接,挂在等高的地方,绳与水平方向成角,试求:(1)绳子的张力;(2)链条最低点的张力。
图2解析:(1)对整体(链条)分析,如图3所示,由平衡条件得①所以图3(2)如图4所示,隔离其中半段(左边的)链条,由平衡条件得②图4由①②得例3、有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间有一根质量可忽略,不可伸长的细绳相连,并在某一位置平衡,如图5所示,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比较,AO杆对P环的支持力和细绳上的拉力的变化情况是()图5A.不变,变大;B.不变,变小;C.变大,变大;D.变大,变小。