2016年秋季学期新版北师大版八年级数学上册3.3轴对称与坐标变化学案4
- 格式:doc
- 大小:337.00 KB
- 文档页数:3
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》主要包括了轴对称的概念及其在坐标系中的应用。
通过本节课的学习,学生将掌握轴对称的定义,理解轴对称与坐标变化之间的关系,并能运用轴对称解决一些实际问题。
二. 学情分析学生在七年级时已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但是,对于轴对称的概念及其在坐标系中的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、思考、操作等活动,逐步理解轴对称的内涵,提高学生解决问题的能力。
三. 教学目标1.知识与技能目标:理解轴对称的概念,掌握轴对称在坐标系中的应用,能运用轴对称解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:轴对称的概念及其在坐标系中的应用。
2.难点:理解轴对称与坐标变化之间的关系,能运用轴对称解决实际问题。
五. 教学方法1.情境教学法:通过设置具体情境,让学生在实际问题中感受轴对称的概念。
2.启发式教学法:引导学生通过观察、思考、操作等活动,自主探索轴对称的内涵。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备相关课件和教学素材,以便在课堂上进行展示和操作。
2.准备一些实际问题,用于巩固学生对轴对称的理解。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。
2.呈现(10分钟)介绍轴对称的定义,让学生通过观察、思考,理解轴对称的本质特征。
3.操练(15分钟)让学生在坐标系中找出一些轴对称的图形,并分析其坐标变化规律。
教师引导学生操作,解答疑问。
4.巩固(10分钟)针对本节课的内容,设计一些练习题,让学生独立完成,检验对轴对称的理解。
北师大版八年级上册数学 3.3 轴对称与坐标变化优秀教案北师大版八年级上册数学3.3轴对称与坐标变化优秀教案3.3轴对称性和坐标变化写出对称点的坐标.1.探索图形坐标变化的过程;(要点)2。
理解并掌握图形坐标变化与图形轴对称性之间的关系。
(难点)分别作点a,b,c关于x轴、y解析:轴的对称点就足够了解:如图所示.点A1(1,4)、B1(3,1)、A2(-1,-4)、B2(-3,-1)和C相对于x轴和y轴对称点的坐标保持不变方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探索点3:探索平面直角坐标系中的规律如图,已知a1(1,0),a2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),。
,那么点a2022的坐标是___一、情境导入在我们的生活中,对称是一种非常普遍的现象。
将图中所示轴对称的黄鹤楼图形置于平面直角坐标系中,其对称轴为坐标轴。
那么,图形上的对称坐标之间的关系是什么?试试看二、合作探究探测点1:关于x轴和y轴对称的点的坐标点a(2a-3,b)与点a′(4,a+2)关于X轴对称,找到a,B解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解决方案:从点a(2a-3,b)和点a'(4,a+2)关于x轴的对称性,我们知道2a-3=4,a+2=-b.711所以a=,b=-.22方法概述:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若a(x,y)与b(m,n)关于x轴对称,则有x=m,y=-n;若a(x,y)与b(m,n)关于y轴对称,则有x=-m,y=n.探索点2:绘图-轴对称变换如下图所示,△abc三个顶点的坐标签分别是a(-1,4)、B(-3,1)和C(0,0)。
使…对称△ ABC关于x轴和y轴解析:从各点的位置可以发现a1(1,0),a2(1,1),a3(-1,1),a4(-1,-1),a5(2,-1),a6(2,2),a7(-2,2),a8(-2,-2),a9(3,-2),a10(3,3),a11(-3,3),a12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2021=503×4+3,所以点a2021在第二象限,纵坐标和横坐标互为相反数,所以a2021的坐标为(-504,504).故填(-504,504).方法小结:解决这类问题的常用方法是通过对几个特例的研究总结出一般规律,然后根据一般规律探索特例三、板书设计。
参赛课《轴对称与坐标变化》教学设计一、教学内容分析《轴对称与标变化》是北师大版八年级数学上册第三章第三节第一课时的内容,本节课主要体现了数形转换的思想,隶属“图形与几何” 领域。
本章的主要内容是从生活中的图形入手,学习轴对称图形及坐标其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索图形对称点坐标的性质。
这一节主要介绍轴对称与坐标变化的相关概念、轴对称与坐标变化的基本特征和性质等内容。
通过本节的教学,学生通过丰富的实例认识轴对称与坐标变化,体会轴对称及坐标变化特征在现实生活中的广泛应用,能够识别简单的轴对称图形及点的坐标关于轴对称轴的特征,探索发现轴对称及坐标变化的基本性质,并能够利用对称点的坐标画出轴对称图形或成轴对称的两个图形。
让学生进一步体会轴对称及坐标变化的应用价值和丰富内涵。
用坐标表示轴对称点,从数量关系的角度刻画了轴对称。
它们都是讲一个图形或两个图形之间的位置关系,是一个静止的状态。
而作轴对称图形是由一个图形得到与它轴对称的图形的过程,是一个运动的过程。
本课时主要研究两方面问题,一方面是探究点或图形的轴对称引起的点的坐标的变化规律;另一方面是如何利用这种点的坐标的变化规律在平面直角坐标系中作出一个图形轴对称图形。
本课时也是又一次进行在平面直角坐标系中研究图形的学习,将为有关图形与坐标的综合运用奠定直接的基础。
二、学情分析八年级学生正处于形象思维的转型期,逐渐向抽象思维过度阶段,如何引导学生从感性的图形认知上升到理性的数学思维是本节课的关键点。
学生在此之前已经学习了轴对称及轴对称变换的相关概念和特征,也掌握了平面直角坐标系的有关概念和基本知识点。
本节课的教学中,给学生留足空间和时间,以指导学生自主学习为主,附之于教师的适当帮助、指导和适时的点拨、点评,先通过学生在平面直角坐标中画出一些关于x 轴或y轴对称的点,写出这些点的坐标,归纳出规律。
通过本节课的学习,学生将感受到图形轴对称之后的坐标变换特征,体验数形结合的思想。
y x O y x O轴对称与坐标变化编写人: 、 审核人:教师寄语:不要学花儿只把春天等待,要学燕子把春天衔来。
课题3.3轴对称与坐标变化 授课教师 学习目标1、会对轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识建立几何直观。
2、(重点):在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标,并知道对应点坐标之间的关系。
3、(难点):在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标,并知道对应点坐标之间的关系。
课堂流程 环节具 体 内 容(内容·学法·时间) 自疑自探 预习导航 (5分钟) 回顾旧知:1、点P (3,4)关于x 轴对称的点的坐标是 ,关于y 轴对称的点的坐标是 ,关于原点对称的点的坐标为 ;2、如果点P 1 (—1,3 )和P 2 (1,b )关于y 轴对称,则b = ;3、已知点M ()y x ,与点N ()3,2--关于x 轴对称,则______=+y x 。
自学指导 (10分钟) 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),你得到了一个怎样的图案?1、将所得图案的各个“顶点”的纵坐标保持不变,横坐标分别乘-1,坐标分别为: 。
依次连接这些点,你会得到怎样的图案?这个图案与原来图案的位置关系是2、将上图中的图案的各个“顶点”的横坐标保持不变,纵坐标分别乘-1,坐标为 , 依次连接这些点,你会得到怎样的图案?这个图案与原图案的位置关系3、关于x 轴对称的两个点的坐标之间有什么关系?关于y 轴呢?关于原点呢?我的困惑(内容·形式·时间) 学组研讨研讨策略一 (3分钟) 形式:两人小组交流与分享结合自研成果对子之间进行交流,并就任务完成情况和书写工整度两方面迅速给出等级评定。
研讨策略二 (2分钟) 形式:四人小组冲刺与挑战 总结图形关于x 轴y 轴对称的点的坐标特征。
八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。
这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。
本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。
二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。
但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。
三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。
四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。
2.难点:如何运用坐标来表示图形的轴对称变换。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。
六. 教学准备1.教师准备:教材、课件、教学素材等。
2.学生准备:课本、练习本、文具等。
七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。
3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。
5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。
课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。
教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。
教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。
1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。
三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。
② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。
本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。
但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。
三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。
2.能够运用坐标变化规律,解决实际问题。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。
2.教学难点:如何运用坐标变化规律解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备坐标纸、剪刀、胶水等实验材料。
3.设计好课堂练习题和课后作业。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。
引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。
引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。
3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。
要求学生用自己的语言描述坐标变化规律。
4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。
北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。
通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。
但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。
2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。
3.培养学生的观察能力、操作能力和思维能力。
四. 教学重难点1.轴对称的概念和性质。
2.坐标变化的应用。
五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。
同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。
2.准备坐标纸,以便学生进行坐标操作。
3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。
2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。
引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。
3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。
然后,让学生将对称轴沿坐标轴移动,观察图形的变化。
通过操作,让学生理解坐标变化对轴对称图形的影响。
4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。
通过解决问题,巩固学生对轴对称和坐标变化的理解。
5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。
3.3《轴对称与坐标变化》教学设计教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系;2.自主探索坐标变化与图形轴对称之间的关系;3.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
教学重点:坐标变化与图形轴对称之间的关系教学难点:坐标变化与图形轴对称之间的关系教学过程:一、导入新课活动过程:观察图形,猜测、验证两个图形之间的关系。
活动成果:借助于已经学过的轴对称的知识,通过猜想、验证得出结论。
【设计意图】:为本节课探索图形变换与坐标变换之间的关系做铺垫,引出课题。
二、探究新知活动一:活动过程:通过在直角坐标系中描点,确定坐标,观察、猜想、验证坐标之间的变换关系。
活动成果:图形变换引起坐标变化。
【设计意图】:通过在直角坐标系中描点,确定坐标,观察、猜想、验证坐标之间的变换关系。
体验由特殊到一般的过程。
活动二:活动过程:通过坐标变化,确定图形的变换关系。
活动成果:坐标变化引起图形变换。
【设计意图】:通过坐标变化,观察、猜想、验证图形之间的变换关系。
体验由特殊到一般的过程。
四、课堂练习1.课本随堂练习五、课堂总结本节课我们通过活动更好的感受图形变换与坐标变换之间的关系。
通过本节课的学习,你还有什么新的收获?请与大家分享。
六、课后作业课内作业:课本课后习题习题3.5 1、2七、板书设计课题:3.3 轴对称与坐标变化1.图形变换与坐标变化之间的关系:2.坐标变化与图形变换之间的关系:八、教学反思本节课经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,教学中一定要给学生创造自主学习与合作交流的机会,留给学生充足的动手机会和思考空间,教师不要急于下结论。
第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
3轴对称与坐标变化
【学习目标】
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
【学习过程】
1、活动探究:探索两个关于坐标轴对称的图形的坐标关系
在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
(1)两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?
(2)在这个坐标系画出小旗ABCD关于x轴的对称图形,它的
“各个”顶点的坐标与原来的点的坐标有什么关系?
2、例题:
(1)在平面直角坐标系内依次连接下列各点:(0,0)(5,4)(3,0)(5,1)(5,-1)
(3,0)(4,-2)(0,0),你得到了一个怎样的图案?
(2)将所得图案的各个“顶点”的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢?
)
猜想:将所得图案的各个“顶点”的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢?
3、归纳、概括
横坐标相同,纵坐标互为相反数的两个点,关于对称
纵坐标相同,横坐标互为相反数的两个点,关于对称
4、巩固练习
五个点的坐标如下:A(-1,2),B(1,2),C(2,-1),D(-1,-2),E(2,1),
其中关于x轴对称的点有,关于y轴对称的
有。
5、活动探究:探索坐标变化引起的图形变化
反过来,关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?(猜想)
6、归纳、概括
关于x轴对称的两点的坐标,它们的横坐标,纵坐标;
关于y轴对称的两点的坐标,它们的横坐标,纵坐标。
运用、巩固练习
已知点P(2a-3,3),点A(-1,3b+2),
(1)如果点P与点A关于x轴对称,那么a+b= ;
(2)如果点P与点A关于y轴对称,那么a+b= 。
变式、拓展
如果纵坐标、横坐标都分别变为原来的-1倍,得到的图形与原来的图形又有怎样的关系呢?说说你的判断和理由。
.
小结
1.你有哪些收获?
2.要画一个和已知图形的成轴对称的图形,你有哪些方法,与同伴交流.
反馈练习
1. 已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:
①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )
A.1个B.2个C.3个D.4个
2、已知点P的坐标为(5,3),则点P关于x轴对称点坐标为
3、已知点A(2,y)与点B(x,3)关于y轴对称,则xy=
4、在直角坐标系中,把点(0,0)(1,0)(3,0)(2,1)(3,4)(5,3)(5,2)(3,2),用线段依次连接起来,并将各点做如下变化:
(1)横坐标保持不变,纵坐标分别乘-1,所得图案较原图案有什么变化?
(2)纵坐标保持不变,横坐标分别乘-1,所得图案较原图案有什么变化?
(3)横坐标和纵坐标都乘-1,所得图案较原图案有什么变化?。