几何初步认识
- 格式:doc
- 大小:134.50 KB
- 文档页数:6
七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
第七章几何图形的初步认识知识回顾1、点,线,面:①图形是由构成的。
②面与面相交得,线与线相交得。
③点动成,线动成,面动成。
2、线:①线段有两个: 。
②将线段向一个方向无限延长就形成了。
只有一个。
③将线段的两端无限延长就形成了。
没有端点。
④经过两点直线(两点确定直线)。
3、比较长短:①两点之间的所有连线中,最短。
②两点之间线段的长度,叫做这两点之间的。
4、角:角的度量与表示:①角由两条具有的射线组成,两条射线的是这个角的顶点。
②一度的是一分,一分的是一秒。
角的比较:①角也可以看成是由一条射线绕着而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做。
始边继续旋转,当他又和始边重合时,所成的角叫做。
④余角:。
⑤补角:。
⑥邻补角:。
⑦从一个角的顶点引出的一条射线,把这个角分成,这条射线叫做这个角的平分线。
⑧同角或等角的相等。
⑨同角或等角的相等。
5、平行:①同一平面内,的两条直线叫做平行线。
②经过直线外一点,有直线与这条直线平行(平行公理)。
③如果两条直线都与第3条直线平行,那么这两条直线(平行线的传递性)。
④相等,两直线平行。
⑤相等,两直线平行。
⑥,两直线平行。
⑦,同位角相等。
⑧两直线平行,。
⑨两直线平行,。
6、垂直:①如果两条直线相交且夹角成,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做。
③平面内,过一点直线与已知直线垂直。
7、垂直平分线(线段的中垂线):一条线段的直线叫垂直平分线。
8、垂直平分线定理:性质定理:在垂直平分线上的点到的距离相等。
判定定理:在这线段的垂直平分线上。
9、角平分线:把一个角叫该角的角平分线。
10、角平分线定理:性质定理:角平分线上的点到相等。
判定定理:在该角的角平分线上。
1.几何图形的认识:-点:没有大小和形状的位置。
-线段:由两个端点和之间的所有点组成,没有曲线。
-直线:在平面上的无限延伸得两个方向上的点组成。
-尖角:小于90度的角。
-钝角:大于90度但小于180度的角。
-直角:等于90度的角。
-平行线:永远不会相交的线。
-垂直线:相交的角度为90度的线。
2.几何图形的识别和分类:-三角形:有三条边的图形。
-矩形:有四个直角的四边形。
-正方形:四个边相等且四个直角的四边形。
-平行四边形:有两组对边平行的四边形。
-圆形:由一个圆心和一条半径相等的弧线组成。
-弧:圆形的一部分。
-曲线:线条在不同点上的变向。
3.几何图形的特征:-边:图形的边缘。
-角:两条线相交所形成的区域。
-顶点:两条边或多条边的交点。
-对称性:图形左右或上下对折后完全相同。
-线对称:通过中心线对折后完全一样。
-中心对称:图形可通过其中一点为中心旋转180度后重合。
4.几何图形的关系和组合:-图形的包含和相交关系:一个图形是否被另一个图形包围或相交。
-集合:一个或多个物体的组合。
-二维几何体:平面上的图形。
-三维几何体:有长度、宽度和高度的立体图形。
-分解和组合:将复杂的图形分解成简单的图形,并将简单的图形组合成复杂的图形。
以上是小学三年级数学几何初步认识的一些重要知识点。
随着学习的深入,孩子们还将学习到更多有关几何的概念和技能,如相似、等边、等腰三角形等。
这些基础知识为孩子打下了坚实的几何基础,为将来更深入的数学学习奠定了基础。
初步认识几何图形当我们还是孩子的时候,可能就已经开始接触各种简单的几何图形,比如圆形的气球、方形的积木、三角形的三明治。
但几何图形可不仅仅是这些常见的形状,它是一门丰富而有趣的学问,涵盖了我们生活的方方面面。
几何图形,简单来说,就是由点、线、面、体等元素组成的具有一定形状和特征的图形。
它们无处不在,从我们居住的房屋结构,到日常使用的各种物品设计,再到大自然中的奇妙景象,都离不开几何图形的身影。
先来说说点。
点是几何中最基本的元素,它没有大小和形状,只是一个位置的标记。
想象一下在一张白纸上点一个小黑点,那个小黑点就是一个点。
无数个点连接起来,就可以形成线。
线又分为直线和曲线。
直线是笔直的,没有任何弯曲,像我们用直尺画出的线就是直线。
而曲线则是弯曲的,比如圆的周长就是一条曲线。
直线和曲线都有着独特的性质和用途。
比如,在建筑设计中,直线可以给人一种简洁、稳定的感觉;而曲线则常常能带来柔和、优美的视觉效果。
面是由线围成的封闭图形。
常见的面有三角形、四边形、圆形等。
三角形是由三条线段首尾相连组成的,它具有稳定性,在很多建筑结构中都能看到三角形的运用,比如桥梁的支撑结构。
四边形包括平行四边形、长方形、正方形等,它们的性质各不相同。
平行四边形的对边平行且相等,长方形的四个角都是直角,正方形则是特殊的长方形,四条边都相等且四个角都是直角。
圆形是一个非常特殊的图形,它的边缘到中心点的距离始终相等,这种均匀性使得圆形在很多设计中被广泛应用,比如车轮、钟表的表盘等。
体是由面围成的三维图形。
比如正方体、长方体、圆柱体、球体等。
正方体有六个面,每个面都是正方形,且六个面的大小相等。
长方体则相对更常见,我们的书本、冰箱等很多物品都接近长方体的形状。
圆柱体有两个底面和一个侧面,底面是圆形,侧面展开是一个长方形。
球体则是完全圆滑的,像足球、篮球就是球体。
在我们的日常生活中,几何图形的应用随处可见。
家里的家具、电器的外形,大多数都是由各种几何图形组合而成。
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“几何图形的初步认识”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题.学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”是“图形与几何”领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.图形的性质的教学,需要引导学生理解欧几里得平面几何的基本思想,感悟几何体系的基本框架:通过定义确定论证的对象,通过基本事实确定论证的起点,通过证明确定论证的逻辑,通过命题确定论证的结果.要组织学生经历图形分析与比较的过程,引导学生学会关注事物的共性、分辨事物的差异、形成合适的类,会用准确的语言描述研究对象的概念,提升抽象能力,会用数学的眼光观察现实世界;要通过生活中的或者数学中的现实情境,引导学生感悟基本事实的意义,经历几何命题发现和证明的过程,感悟归纳推理过程和演绎推理过程的传递性,增强推理能力,会用数学的思维思考现实世界;要引导学生经历针对图形性质、关系、变化确立几何命题的过程,体会数学命题中条件和结论的表述,感悟数学表达的准确性和严谨性,会借助图形分析问题,形成解决问题的思路,发展模型观念,会用数学的语言表达现实世界.2.本单元教学内容分析冀教版教材七年级上册第二章“几何图形的初步认识”,本章包括八个小节:2.1从生活中认识几何图形;2.2线段、射线、直线;2.3线段长短的比较;2.4线段的和与差;2.5角和角的度量;2.6角大小的比较;2.7角的和与差;2.8平面图形的旋转.“图形的性质”主题通过学习图形的概念,观察图形的特征,经历观察→猜想→验证等过程,以基本图形点、线、面展开研究.认识几何图形,了解线与角、线段与角的有关性质并学会计算,认识平面图形的旋转.本章的基本技能是画一条线段等于已知线段,作一个角等于已知角,作两个角的和与差.能进行角的度数和线段长度的计算.由于是初中几何入门课,要注重对学生良好学习习惯的培养,一般按照“事物或模型→几何图形→文字表示→符号表示”的教学程序,让学生先理解符号或文字所表达的图形及关系,并把它们用图形直观表示出来,化“无形”为“有形”.“图形与几何”教学的一个重要目标是发展学生的空间观念,培养空间想象力,为了达到教学目标,本章教学要重视让学生从事动手操作、观察、想象、交流等活动,为学生提供有意义、有一定挑战性的学习任务,引导学生获得几何图形的知识和有关技能,为后期学习三角形、平行四边形、圆的相关概念、定理的证明以及几何综合问题等内容的教学起到铺垫作用.同时注意,本章中的一些抽象几何概念只要求学生有一些初步直观的认识,一些基本结论、基本事实也仅要求通过观察、思考、探究等活动归纳得出,仅作“说理”和“简单推理”,不要求达到很高的科学严密程度,这为以后教学逐步提高推理要求做了准备.三、单元学情分析本单元内容是冀教版教材数学七年级上册第二章几何图形的初步认识,学生在小学阶段对立体图形和平面图形有了初步的认识,掌握了简单图形的周长、面积、体积的计算方法,初步认识了图形的平移、旋转和轴对称,形成了初步的空间观念和几何直观.这使得本单元的学习之初容易理解,学生的学习兴趣也会很大.但随着学习的深入,对数学的探究意识、数学的抽象能力、推理能力的要求都不断提高.七年级的学生刚从小学过渡到初中,对新知识充满好奇,但还未经历过真正的数学观察、猜想、操作、思考、说理等数学活动,小组合作意识和交流、表达的能力都较弱,所以在教学过程中,要耐心引导,多鼓励学生大胆猜想,勇于表达,初步培养学生积极探索,发现问题,分析问题和解决问题的能力,逐步提高推理能力.本单元难点是对几何问题进行分析并有条理地表达,老师要利用课上多让学生交流,表达,并不断规范,在作业处理中,指出不规范表达的地方,耐心指导学生改正,增强学习信心.四、单元学习目标1.通过对丰富的实物和实例的抽象,进一步认识几何图形,尤其是点、线段、射线、直线和角,并会表示它们,发展学生抽象能力.2.经历观察、测量、画图、折纸等活动,了解点、线段、射线、直线和角的有关性质,初步形成空间观念.3.会比较线段的长短和角的大小,掌握判定线段长短和角大小的方法,发展空间观念和几何直观.4.认识角的度量单位,会进行角的换算.5.会计算线段的和与差、角的和与差,并学会用数学知识解决简单几何问题,培养学生的模型观念、应用意识.6.能使用直尺(无刻度)和圆规作线段和角,培养学生的动手能力.7.通过和角的认识相结合认识平面图形的旋转,提高学生的探究力和想象力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
03 几何初步认识学习目标:1、经历对线、角、三角形、四边形知识的系统化整理过程,加深对几何初步认识相关知识的理解,发展学生的平面图形思维。
2、熟练掌握计算方法,并能灵活应用,解决有关实际问题。
学习重点:灵活运用三角形、长方形、正方形的内角、周长公式计算方法解决实际问题。
学习难点:如何将实际问题转化为数学中的几何计算,并能正确进行计算。
学习过程:一、知识点回顾1.线段、射线、直线的联系与区别:联系是三者都是直的,区别是线段有两个端点,可以量出长度;射线只有一个端点,可以无限延长;直线没有端点,两端都可以无限延长。
射线和直线是无限长的。
2.角:从一点引出两条射线所组成的图形叫做角。
3.角的大小:角的大小看两条边张开的大小,张开的越大,角越大。
计量角的大小的单位:度,用符号“°”表示。
小于90°的角叫做锐角;大于90°而小于180°的角叫做钝角。
角的两边在一条直线上的角叫做平角。
平角180°。
4.垂线:两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂线,这两条直线的交点叫做垂足。
(画图说明)5.平行线:在同一平面内不相交的两条直线叫做平行线。
也可以说这两条直线互相平行。
6.(画图说明)平行线之间垂直线段的长度都相等。
7.三角形:有三条线段围成的图形叫做三角形。
8.三角形的分类:(1)按角分:锐角三角形(3个角都是锐角)、钝角三角形(有1个角是钝角)、直角三角形(有1个角是直角)。
(2)按边分:一般三角形、等腰三角形(2条边长度相等)、等边三角形(3条边长度相等)。
9.三角形三个内角和是180°。
三角形任意两边之和大于第三边。
10.四边形:由四条线段围成的图形。
11.轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。
折痕所在的这条直线叫做对称轴。
12.学过的图形中的轴对称图形有:圆(无数条)、等腰三角形(1条)、等边三角形(3条)、长方形(2条)、正方形(4条)、等腰梯形(1条)13.周长:围成一个图形的所有边长的总和就是这个图形的周长。
面积:物体的表面或围成的平面图形的大小,叫做它们的面积。
二、知识运用几何初步习题精编一、对号入座。
1.面上5时整,时针和分针组成()角,4时30分时针和分针组成()角,()时整,时针和分针组成平角,()时整或()时整,时针和分针组成直角。
2.两条直线相交,如果其中一个角是90度,其余3个角都是(),它两条直线一定()。
3.经过1小时,钟面上分针转过的角度与时针转过的角度相差()4.过一点能画()条直线,过两点能画()条直线。
5.把一张正方形纸对折两次,形成的折痕可能互相(),也可能互相()。
A B C D6.有()条线段。
7.一个平面有4个不在同一直线上的点,连接其中任意两个点,最多能画()条直线。
8.在同一平面内两条直线的位置关系有()和()。
二、火眼金睛。
1.同一平内两条直线要么平行,要么垂直。
()2.如果两条直线都和第三条直线平行,那么这两条直线也一互相平行。
()3.如果用一个5倍的放大镜看一个12度的角,那么看到的还是12的角。
()4.一个平角减去一个锐角,得到一个钝角。
()5.一条射线长5米。
()6.两条直线不相交就平行。
()三、慎重选择。
1.从12时到12时15分,分针旋转的角度是()。
A、周角B、平角C、直角2.属于射线的是()A、正方形边长B、角的边C、平行线D、弧3.用一副三角尺能拼成()的角。
A、180 度B、105 度C、85度4.如果一个三角形中最小的一个角大于45,这个三角形()A、有一个直角B、有一个钝角C、另外两个角是锐角四、操作题。
AB是一条街道,要从点P修一条小路通向街道AB,怎么修最省工省料?(用线段在图上画出这条线路)街道A BP平 面 图 形 习 题 精 编一、认真思考,准能填好。
1.三角形的一个内角正好等于其余两个内角的和,这是一个( )三角形。
2.一个等腰三角形,它的顶角是72º,它的底角是( )度。
3.一个等腰三角形的两条边分别是5厘米和8厘米,那么它的周长最多是( )厘米,最少是( )厘米。
(第三条边为整厘米数)4.用360厘米长的铁丝围成一个三角形,三条边长度的比是1:2:3,它的三条边的长度分别是( ).( )和( )厘米。
二、仔细推敲,准确判断。
1.小明说:我用11厘米.1厘米.1厘米的三根小棒围成了一个等腰三角形。
他的话对吗?为什么?2.小芳说:我用两块一样的三角板拼成了一个大的三角形,这个三角形的内角和是360º。
她的话对吗?为什么?三、反复权衡,慎重选择。
1.人们常用三角形的( )性生产自行车大梁,运用平行四边形的( )性应用电动大门。
A .稳定性B .易变形C .平衡性2.平行四边形有( )高,梯形有()条高,三角形有( )条高。
A .无数条B .一条C .三条四、动动手,画一画。
1.画出下面各图形底边上的高。
2.把下面的图形按要求分割(1)在三角形中添一条线段,把它分一分,看看谁的分法多。
(2)把五边形按要求进行分割周长面积习题精编一、对号入座。
1. 270平方厘米=()平方分米 1.4公顷=()平方米2. 一个平行四边形的底是9分米,高是底的2倍,它的面积是( )平方分米。
与它等底等高的三角形的面积是()平方厘米。
3. 一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是()。
4. 一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了()厘米,针尖扫的面积是()平方厘米。
5. 用4个边长是2厘米的小正方形拼成一个大长方形,长方形的周长可能是()厘米,也可能是()厘米。
6、等腰三角形的三边之和是25cm,一条边长9厘米,它的底长()厘米。
7、右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为()平方厘米.二、慎重选择。
(将正确答案的序号填在括号里)1. 两个()梯形可以拼成一个长方形。
A.等底等高B.完全一样C.完全一样的直角2. 用木条钉成的长方形拉成一个平行四边形,它的高和面积()A.都比原来大 B.都比原来小 C.都与原来相等3. 等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长()。
A.24厘米 B.12厘米 C.18厘米 D.36厘米5.下面图形周长较长的是()三、巧解巧算。
已知下图中正方形的周长为36厘米,求平行四边形的面积。
四、解决问题。
1.有一块长2米,宽1.6米的塑料薄膜,用它做规格相同的塑料袋,袋长4分米,宽3分米,可做多少个塑料袋?2.在一个直径是16米的圆心花坛周围,有一条宽为2米的小路围绕,小路的面积是多少平方米?3.儿童卧室里的挂钟的底板是从一块长1.2米、宽0.6米的长方形薄铁片中剪下一个最大的圆,请你算算这个圆有多大呢?4.客厅里有一块窗帘长3米、宽1.2米。
(1)这块窗帘有多大?(2)如果要在窗帘的周围缝上花边,你认为应买回多少花边?对称图形习题精编一、认真思考,准能填好。
1.变换图形的位置可以有()、()等方法;按比例放大或缩小图形可以改变图形的()而不改变它的()2.将一个三角形按2:1的比放大后,面积是原来的()倍。
3.一个30。
的角,将它的一条边旋转()。
可得到一个直角。
4.长方形有()条对称轴;正方形有()条对称轴。
二、仔细推敲,准确判断。
1.线段也是轴对称图形。
()2.将一个平行四边形木框拉成一个长方形后、周长不变,面积不变。
()3.把一个图按1:3的比缩小后,周长会比原来缩小3倍,面积会比原来缩小6倍。
()三、反复权衡,慎重选择。
1.下列图案中,是轴对称图形的是()。
2.一个长方形的长和宽各增加5cm,增加的面积()cm2。
①等于25 ②大于25 ③小于25 ④无法确定3.将一个周长12cm的正方形变换成面积为36cm2的正方形。
实际是按()的比放大的。
①1:3 ②2:1 ③3:1 ④4:1三、作业一、准确填空1.钟面上3点半时,时针与分针组成的角是()角;9点半时,时针与分针组成的角是()角2.一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是()平方分米,三角形的面积是()平方分米。
3.把13厘米长的铁丝围成一个等腰三角形(每边为整厘米数),三条边长可能是()、()或()。
4.一个梯形的上底是12厘米,下底是20厘米,高是30厘米,用两个这样的梯形拼成一个平行四边形,拼成的平行四边形的底是()厘米,面积是()平方厘米。
5.把一个长、宽分别是15厘米和10厘米的长方形,拉成一个一条高为12厘米的平行四边形,它的面积是()平方厘米。
二、慎重选择。
(将正确答案的序号填在括号里)1.将一个平行四边形纸片剪拼成长方形,面积(),周长()。
A、不变B、变大C、变小2.如果两个三角形等底等高,那么这两个三角形()。
A、形状一定相同B、面积相同C、一定能拼成一个平行四边形D、完全相同3.等腰梯形周长是48厘米,面积是96平方厘米,高是8厘米,则腰长()。
A、24厘米B、12厘米C、18厘米D、36厘米三、走进生活1.要用面积是1平方分米的正方形拼一个面积是24平方分米的长方形,可以怎样拼?如果要给长方形四周镶上花边,花边最短长多少分米?2、一个等边三角形,它的周长是18厘米,高是5.5厘米,这个三角形的面积是多少平方厘米?3、有一个梯形果园,上底、下底的和是48米,高是10.5米。
如果每4平方米能栽一棵苹果树,一共能栽多少棵果树?。