有关概率流程图的数学计算
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
概率流程图的数学计算一、知识回顾算法流程图的组成元素、画法、代码、秦九韶算法例1任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
例2用二分法设计一个求议程x2–2=0的近似根的算法。
已知x=4,y=2,画出计算w=3x+4y的值的程序框图。
解:程序框如下图所示:和2分别是x和y的值分类加法计数原理、分步乘法计数原理分类加法计数原理,是什么?怎么用?核心:每法皆可完成,方法可分类分步乘法计数原理,是什么?怎么用?核心:每法皆分步,每步皆未完排列排头与非排头二、课堂讲解1.排列组合组合的定义,组合数公式例:从10个不同颜色的球里面选2个,有多少种情况二者的区别与关系2.统计学简单随机抽样(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240B、个体是每一个学生C、样本是40名学生D、样本容量是40分层抽样(1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15C.10,5,30D15,10,20某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n=。
系统抽样下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈从忆编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25B、3,13,23,33,43C.1,2,3,4,5D、2,4,6,16,32统计图表:条形图,折线图,饼图,茎叶图数据集中趋势:中位数、平均数、众数等频率分布直方图为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?。
有关概率流程图的数学计算概率流程图的数学计算授课对象:高二授课内容:算法流程图、排列组合、统计一、知识回顾算法流程图的组成元素、画法、代码、秦九韶算法例1 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
例2 用二分法设计一个求议程x2–2=0的近似根的算法。
已知x=4,y=2,画出计算w=3x+4y的值的程序框图。
解:程序框如下图所示:和2分别是x和y的值分类加法计数原理、分步乘法计数原理分类加法计数原理,是什么?怎么用?核心:每法皆可完成,方法可分类分步乘法计数原理,是什么?怎么用?核心:每法皆分步,每步皆未完排列排头与非排头二、课堂讲解1.排列组合组合的定义,组合数公式例:从10个不同颜色的球里面选2个,有多少种情况二者的区别与关系2.统计学简单随机抽样(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生C、样本是40名学生D、样本容量是40分层抽样(1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为A.15,5,25B.15,15,15C.10,5,30 D15,10,20某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。
系统抽样下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈从忆编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25 B、3,13,23,33,43C.1,2,3,4,5 D、2,4,6,16,32统计图表:条形图,折线图,饼图,茎叶图数据集中趋势:中位数、平均数、众数等频率分布直方图为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?。
25.2(3)用列举法求概率---画树状图法(2步或3步及以上概率)一.【知识要点】1.画树状图法(2步或3步及以上概率)二.【经典例题】1.一个不透明的口袋里装有分别标有汉字“美”、“丽”“四”、“川”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任选一个球,球上的汉字刚好是“四”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 1.(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“美丽”或“四川”的概率为P 2,指出P 1,P 2的大小关系(请直接写出结论,不必证明).2. 有四个一模一样的小球,上面分别标有-2,0,2,3四个数字.从中任意模一个小球,将上面的数字记为a(不放回),再摸一个小球,将上面的数字记为b,这样的数字a,b 能使关于x 的一元二次方程()0112=++-bx x a 有实数根的概率为_______。
3. 有甲、乙、丙3个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm 、5cm 、7cm ;乙盒子中装有2张卡片,卡片上分别写着2cm 、5cm ;丙盒子中装有2张卡片,卡片上分别写着5cm 、7cm 。
所有卡片的形状、大小都完全相同。
现随机从甲、乙、丙三个盒子中各取出一张卡片放在一起,用卡片上标明的数量分别作为一条线段的长度。
(1)请用树状图的方法求这三条线段能组成三角形的概率。
(2)求这三条线段能组成直角三角形的概率。
4.(绵阳2019年第20题11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D 对应的圆心角度数;(2)成绩在D 区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.5.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球出颜色外无其他差别,分别从每个口袋中随机摸出1个球.(1)摸出的2个球都是白球的概率为__________.(2)下列事件中,概率最大的是( )A.摸出的两个球的颜色都相同.B.摸出的两个球的颜色不相同.C.摸出的两个球中至少有1个红球.D.摸出的两个球中至少有1个白球.6.(2020年绵阳期末第20题)(本题满分12分)同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a ,b ),其中第一枚骰子的点数记为a ,第二枚骰子的点数记为b .(1)用列举法或树状图法求(a ,b )的结果有多少种?(2)求方程02=++a bx x 有实数解的概率.三.【题库】【A 】【B 】1.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A. 14B. 12C. 34D. 562.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率为__________.3. 如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作把作为点的横、纵坐标.(1)请你通过列表法或画树状图求点的个数;(2)求点在函数的图象上的概率.【C 】1.田忌赛马的故事为我们所熟知,小亮与小齐学习概率初步知识后设计如下游戏:小亮手中有方块10,8,6三张扑克牌,小齐手中有方块9,7,5三张扑克牌,每人从各自手中取一张牌进行比较,数据大的为本“局”获胜,每次取的牌不能放回,若本局采用三局两胜制,即胜2局或3局者为本次比赛获胜者,当小亮的三张牌出牌顺序为先出6,再出8,最后出10时,小齐随机出牌应对,则小齐本次比赛获胜的概率是 ( )A.16B.12C.19D.13 2.某校甲乙丙丁四名同学在运动会上参加4x100米接力比赛,其中甲跑第一棒,乙跑第二棒的概率是____________.3.(11分)每年3月12日,是中国的植树节。
几种常见的概率计算问题_概率问题计算方法解概率问题如果是一次操作问题,一般直接用公式法;如果是两次操作问题,一般用列表法或画树状图法都可以解答;如果是三次操作问题,用画树状图法较易解答。
一、游戏类问题例1图1是由转盘和箭头组成的两个装置,装置A,B的转盘分别被分成三个面积相等的扇形。
装置A上的数字分别为1,6,8,装置B上的数字分别是4,5,7,这两个装置除表面数字不同外,其他结构相同。
现在你和另一个人分别同时用力转动A,B两个转盘上的箭头。
规定箭头停留在较大数字的一方获胜(若箭头停在界线上,再重转一次,直到不停在界线上为止),那么你会选择哪个装置?为什么?解析:这是两次操作问题,所以用列表法。
把所有可能得到的数字组合列成下表:由表知P(A>B)=,P(B>A)=,所以选择A装置。
例2(济宁市)如图2,将转盘等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6。
指针的位置固定,自由转动转盘,当它停止时,指针指向偶数区域的概率是(指针指向两个扇形的交线时,当做指向右边的扇形)______,请你利用这个转盘设计一个游戏,当自由转动的转盘停止时,指针所指区域的概率为。
解:指针指向偶数区域的概率是P==。
游戏设计:①将1和2所在的扇形涂成红色,3和4所在的扇形涂成黄色,5和6所在的扇形涂成绿色,则指针指向红色或黄色或绿色区域的概率都为。
②分别将1和4所在的扇形涂成红色,2和5所在的扇形涂成黄色,3和6所在的扇形涂成绿色,则指针指向红色或黄色或绿色区域的概率为。
例3(辽宁省)四张质地相同的卡片如图3所示,将卡片洗匀后,背面朝上放置在桌面上。
(1)求随机抽取1张卡片,恰好得到数字2的概率。
(2)小贝和小晶用以上4张卡片做游戏,规则见图4,你认为这个游戏公平吗?请用列表或画树状图法说明理由;若不公平,请你修改规则,使游戏变得公平。
解析:(1)是一次操作问题,可直接用公式。
(2)是两次操作问题,要用列表法或画树状图法。
概率流程图的数学计算:瀑布算法、圆桌算法、混合算法解析概率流程图的数学计算:瀑布算法、圆桌算法、混合算法解析攻击判定流程研究:瀑布算法、圆桌算法、混合算法解析攻击判定流程几乎是所有包含战斗玩法的游戏都无法绕过的一块内容,常见的攻击判定流程有瀑布算法、圆桌算法以及混合算法三种。
本文简述了这三种判定流程的特征,以实例对比分析了瀑布算法与圆桌算法各自的优点,以期为后续其他战斗数值设计内容的论述提供一定的基础。
攻击判定流程概述自此开始正文内容的叙述——让我们直接代入一个实例:在一款游戏中,攻击方有命中率和暴击率两个攻击属性,而防守方有闪避率、招架率和格挡率三个防御属性。
于是相应的,一次攻击有可能产生6种判定结果:未命中、普通命中、闪避、招架、格挡和暴击。
当采用不同的判定流程进行攻击结算时,6种判定结果出现的频率会截然不同。
1. 瀑布算法顾名思义,在瀑布算法中,各事件的判定顺序如同瀑布一般自上而下。
如果“水流”在某个位置被截断,则后面的流程都将不再继续进行。
据我所知,瀑布算法是大多数游戏所采用的攻击判定算法。
上述实例若采用瀑布算法,则会以如下方式进行判定:•先判定攻方是否命中•再判定是否被守方闪避•再判定是否被守方招架•再判断是否被守方格挡•最后判定该次攻击是否为暴击<ignore_js_op>瀑布算法流程图由此我们可以得出:瀑布算法的判定结果分布由此我们可以得出:l 瀑布算法特征3:各事件出现的概率符合经典的概率计算方法l 瀑布算法特征4:掷骰轮次越偏后的属性衰减程度越大,但不会出现无效的属性2.圆桌算法将所有可能出现的事件集合抽象成一个圆桌桌面,便是圆桌算法这一称呼的由来。
圆桌算法的实质,是将所有可能发生的事件状态按优先级依次放上桌面,直至所有事件被放完或桌面被填满。
圆桌算法正是史诗级巨作魔兽世界中所采用的算法。
据笔者了解,使用该算法的游戏并不多见,但即便仅魔兽世界这一款,已足以使这种算法成为永恒的经典~上述实例若采用圆桌算法,则会用一次掷骰判定该次攻击的结果。
求一个有关概率流程图的数学计算;授课对象:高二;授课内容:算法流程图、排列组合、统计;一、知识回顾;算法流程图的组成元素、画法、代码、秦九韶算法;例1任意给定一个大于1的整数n,试设计一个程序或;2用二分法设计一个求议程x2–2=0的近似根的算;已知x=4,y=2,画出计算w=3x+4y的值的;解:程序框如下图所示:;开始;输入4.2;W=3×4+4×2;输
求一个有关概率流程图的数学计算
授课对象:高二
授课内容:算法流程图、排列组合、统计
一、知识回顾
算法流程图的组成元素、画法、代码、秦九韶算法
例1 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
例
2 用二分法设计一个求议程x2–2=0的近似根的算法。
已知x=4,y=2,画出计算w=3x+4y的值的程序框图。
解:程序框如下图所示:
开始
↓
输入4.2
↓
W=3×4+4×2
↓
输出w
↓
结束
和2分别是x和y的值分类加法计数原理、分步乘法计数原理
分类加法计数原理,是什么?怎么用?
核心:每法皆可完成,方法可分类分步乘法计数原理,是什么?怎么用?核心:每法皆分步,每步皆未完
排列
排头与非排头
二、课堂讲解
1.排列组合
组合的定义,组合数公式
例:从10个不同颜色的球里面选2个,有多少种情况
二者的区别与关系
2.统计学
简单随机抽样
(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。