牛顿运动定律应用专题
- 格式:pdf
- 大小:835.55 KB
- 文档页数:4
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
2025高考物理 牛顿运动定律的综合应用一、多选题1.用水平拉力使质量分别为m 甲、m 乙的甲、乙两物体在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ乙。
甲、乙两物体运动后,所受拉力F 与其加速度a 的关系图线如图所示。
由图可知( )A .甲乙<m mB .m m >甲乙C .μμ<甲乙D .μμ>甲乙 2.用一水平力F 拉静止在水平面上的物体,在外力F 从零开始逐渐增大的过程中,物体的加速度a 随外力F 变化的关系如图所示,2=10m /s g 。
则下列说法正确的是( )A .物体与水平面间的最大静摩擦力为14NB .物体做变加速运动,F 为14N 时,物体的加速度大小为27m /sC .物体与水平面间的动摩擦因数为0.3D .物体的质量为2kg3.如图所示,一物块以初速度0v 沿粗糙斜面上滑,取沿斜面向上为正向。
则物块速度随时间变化的图像可能正确的是( )A.B.C.D.4.如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取g=10m/s2.由题给数据可以得出A.木板的质量为1kgB.2s~4s内,力F的大小为0.4NC.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2二、单选题5.某运送物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。
若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为()A.F B.1920FC.19FD.20F6.如图,两物块P、Q用跨过光滑轻质定滑轮的轻绳相连,开始时P静止在水平桌面上。
牛顿运动定律及应用例题和知识点总结牛顿运动定律是经典力学的基础,对于理解物体的运动和受力情况具有至关重要的意义。
接下来,让我们一起深入探讨牛顿运动定律的相关知识点,并通过具体的例题来加深对其的理解和应用。
一、牛顿第一定律牛顿第一定律,也称为惯性定律,其内容为:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
惯性是物体保持原有运动状态的性质,质量是衡量物体惯性大小的唯一量度。
质量越大,惯性越大,物体的运动状态就越难改变。
例如,在一辆行驶的公交车上,当车突然刹车时,站着的乘客会向前倾。
这是因为乘客原本具有向前的运动惯性,而车的刹车力使车的运动状态改变,但乘客的身体由于惯性仍要保持向前运动的趋势。
二、牛顿第二定律牛顿第二定律的表达式为:F = ma,其中 F 表示物体所受的合力,m 表示物体的质量,a 表示物体的加速度。
这一定律表明,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比。
当合力为零时,加速度为零,物体将保持匀速直线运动或静止状态。
例题:一个质量为 2kg 的物体,受到水平方向上大小为 6N 的合力作用,求物体的加速度。
解:根据牛顿第二定律 F = ma,可得 a = F/m = 6/2 = 3m/s²,所以物体的加速度为 3m/s²。
在实际应用中,需要注意合力的计算和方向的确定。
例如,一个物体在斜面上运动,需要将重力分解为沿斜面和垂直斜面的两个分力,然后计算沿斜面方向的合力。
三、牛顿第三定律牛顿第三定律指出:两个物体之间的作用力和反作用力,总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力同时产生、同时消失,且性质相同。
比如,当你用力推墙时,墙也会对你施加一个大小相等、方向相反的反作用力。
例题:一个人在冰面上行走,他向后蹬冰面,冰面对他的反作用力使人向前运动。
如果人对冰面的作用力为 100N,那么冰面对人的反作用力也是 100N。
物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图甲所示,长为L =4.5 m 的木板M 放在水平地而上,质量为m =l kg 的小物块(可视为质点)放在木板的左端,开始时两者静止.现用一水平向左的力F 作用在木板M 上,通过传感器测m 、M 两物体的加速度与外力F 的变化关系如图乙所示.已知两物体与地面之间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力,g = 10m /s 2.求:(1)m 、M 之间的动摩擦因数;(2)M 的质量及它与水平地面之间的动摩擦因数;(3)若开始时对M 施加水平向左的恒力F =29 N ,且给m 一水平向右的初速度v o =4 m /s ,求t =2 s 时m 到M 右端的距离. 【答案】(1)0.4(2)4kg ,0.1(3)8.125m 【解析】 【分析】 【详解】(1)由乙图知,m 、M 一起运动的最大外力F m =25N , 当F >25N 时,m 与M 相对滑动,对m 由牛顿第二定律有:11mg ma μ=由乙图知214m /s a =解得10.4μ=(2)对M 由牛顿第二定律有122()F mg M m g Ma μμ--+=即12122()()F mg M m g mg M m g Fa M M Mμμμμ--+--+==+乙图知114M = 12()94mg M m g M μμ--+=-解得M = 4 kg μ2=0. 1(3)给m 一水平向右的初速度04m /s v =时,m 运动的加速度大小为a 1 = 4 m/s 2,方向水平向左,设m 运动t 1时间速度减为零,则111s v t a == 位移21011112m 2x v t a t =-=M 的加速度大小2122()5m /s F mg M m ga Mμμ--+==方向向左, M 的位移大小22211 2.5m 2x a t == 此时M 的速度2215m /s v a t ==由于12x x L +=,即此时m 运动到M 的右端,当M 继续运动时,m 从M 的右端竖直掉落,设m 从M 上掉下来后M 的加速度天小为3a ,对M 由生顿第二定律23F Mg Ma μ-=可得2325m /s 4a =在t =2s 时m 与M 右端的距离2321311()()8.125m 2x v t t a t t =-+-=.3.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s 时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A 由静止开始自由下滑,滑至坡底B 处(B 处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC 之间的某处.如图所示,不计空气阻力,已知AB 长14.8m ,取g =10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2; 由速度时间关系得 t 1=11v a =1s (2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22vx m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图1所示, 质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v 0从左端冲上木板。
牛顿运动定律的应用牛顿运动定律是经典力学的基石,被广泛应用于各个领域。
它们为我们解释了物体运动的规律,并且在实际生活和科学研究中有着重要的应用。
在本文中,我们将探讨几个关于牛顿运动定律应用的例子,展示这些定律的实际应用和意义。
一、运动中的惯性第一个应用例子是关于运动中的惯性。
牛顿第一定律告诉我们,一个物体如果没有外力作用,将保持其原有的状态,即静止物体保持静止,运动物体保持匀速直线运动。
这就是物体的惯性。
拿我们日常生活中最常见的例子来说,当我们在汽车上突然刹车时,身体会继续保持前进的动力,直到与座椅或安全带接触,才会停下来。
这说明了牛顿第一定律的应用。
如果没有外力的作用,我们会按照惯性继续移动。
二、加速度与力的关系牛顿第二定律是描述物体加速度与施加在物体上的力之间关系的定律。
它告诉我们,物体的加速度与作用力成正比,与物体的质量成反比。
运用这一定律,我们可以解释为什么需要施加更大的力来加速一个较重的物体,而用相同大小的力加速一个较轻的物体时,后者的加速度更大。
在我们日常生活中,这个定律的应用非常广泛。
比如,开车时,我们需要踩下油门,施加一定的力来加速汽车。
同时,如果我们要减速或停车,需要踩下刹车踏板,通过施加反向的力来减少汽车的速度。
三、作用力与反作用力牛顿第三定律指出,对于每一个作用力都会有一个同大小、反方向的作用力作用在不同的物体上。
这就是我们常说的“作用力与反作用力”。
这个定律可以解释许多我们生活中的现象。
例如,当我们走路时,脚对地面施加力,地面也会对脚产生同样大小、反方向的力。
这种反作用力推动我们向前移动。
在工程领域中,牛顿第三定律的应用也非常重要。
例如,当一架飞机在空气中飞行时,空气对飞机产生的阻力同时也是飞机推进的力。
这个定律有助于我们设计高效的飞机引擎和减少能源消耗。
四、万有引力定律最后一个应用例子是万有引力定律。
这个定律描述了两个物体之间相互作用的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。
牛顿运动定律的应用实例引言:牛顿运动定律是物理学中最经典的定律之一,它描述了物体在力的作用下的运动状态。
本文将探讨牛顿运动定律在实际生活中的几个应用实例,从而帮助我们更好地理解这一定律的重要性和普适性。
第一部分:惯性和牛顿第一运动定律惯性是指物体保持静止或匀速直线运动的性质。
根据牛顿第一运动定律,物体只有在受到外力作用时才会改变其运动状态。
这个定律的一个实际应用实例是汽车的急刹车。
当司机突然踩下刹车时,车辆会减速并停下来。
这是因为刹车时施加在车轮上的摩擦力,产生了一个与运动方向相反的作用力。
根据牛顿第一定律,车辆的速度发生变化,因为有一个外力作用于它。
如果没有这个摩擦力,车辆将保持之前的速度继续前进,司机将无法停下车辆。
第二部分:牛顿第二运动定律牛顿第二运动定律表明一个物体所受的力与其加速度之间的关系。
其计算公式为F = ma,即力等于物体的质量乘以加速度。
这个定律可以应用于多个实例,其中一个是运动员投掷铅球。
在铅球比赛中,运动员用手臂施加一个向前推的力。
根据牛顿第二定律,运动员施加的力越大,铅球的加速度就越大。
同时,铅球的质量也会影响其加速度。
较重的铅球需要更大的力才能获得相同的加速度。
第三部分:牛顿第三运动定律牛顿第三运动定律说明了力的作用具有相互作用的性质,即每个作用力都有相等大小但方向相反的反作用力。
这个定律可以解释很多现象,其中一个例子是火箭发射。
在火箭发射过程中,燃料燃烧产生的气体通过喷射口向后排出。
根据牛顿第三定律,喷射出的气体会给火箭提供向前的推力,而火箭本身会给排出气体一个向后的反作用力。
这正是火箭能够加速并离开地球表面的原因。
结论:牛顿运动定律是物理学中的基石,对于理解和描述物体在力的作用下的运动行为起着重要作用。
本文介绍了牛顿运动定律在实际生活中的几个应用实例,包括汽车的急刹车、运动员投掷铅球以及火箭发射。
通过这些实例,我们可以更清楚地理解和应用牛顿运动定律,从而更好地认识物理世界中的运动规律。
高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高中物理牛顿运动定律的应用综合题专题训练含答案姓名:__________ 班级:__________考号:__________一、综合题(共20题)1、(10分)物体以12m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25,g取10m/s2,求:sin37°=0.6,cos37°=0.8(1)物体沿斜面上滑的最大位移;(2)物体再滑到斜面底端时的速度大小;(3)物体在斜面上运动的时间。
2、(10分)某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s内下降高度为1800 m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.(1)求飞机在竖直方向上产生的加速度多大?(2)试估算质量为65 kg的乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.3、(10分)在水平地面上有一质量为2kg的物体,物体在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/3,该物体的运动速度随时间t的变化规律如图所示.求:(1)物体受到的拉力F的大小.(2)物体与地面之间的动摩擦因素.(g取10m/s2)4、(8分)楼梯口一倾斜的天花板与水平地面成,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10N,刷子的质量为,刷子可视为质点,刷子与板间的动摩擦因数为0.5,天花板长为,取,试求:(1)刷子沿天花板向上的加速度(2)工人把刷子从天花板底端推到顶端所用的时间5、(8分)如图所示,用水平力F将一个木块压在竖直墙壁上,已知木块重G=6N,木块与墙壁的动摩擦因数=0.25。
则:(1)当F=25N时,木块静止不动,木块受到的摩擦力是多大?(2)当F=35N时,木块静止仍不动,木块受到的摩擦力是多大?(3)当F=10N时,木块沿竖直墙壁滑动,木块受到的摩擦力是多大?6、(10分)如图 10 所示,质量m= 2kg 的物体静止在水平地面上,物体与地面间的动摩擦因数μ = 0.75。
1. 牛顿运动定律在生活中有哪些应用?关键信息项:1、牛顿运动定律的具体内容2、生活中的常见场景3、具体应用案例4、应用带来的影响和效果1、牛顿运动定律的具体内容11 牛顿第一定律,又称惯性定律,任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
12 牛顿第二定律,物体的加速度跟作用力成正比,跟物体的质量成反比,且加速度的方向跟作用力的方向相同。
13 牛顿第三定律,相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,且作用在同一条直线上。
2、生活中的常见场景21 交通运输领域,如汽车、火车、飞机等的运行。
22 体育运动项目,如跑步、跳远、跳高、投掷等。
23 日常物品的使用,如家具的移动、电器的操作等。
3、具体应用案例31 在汽车制动方面,当司机踩下刹车踏板时,刹车系统产生的摩擦力使汽车减速。
根据牛顿第二定律,加速度与作用力成正比,与质量成反比。
通过合理设计刹车系统,增大摩擦力,从而在较短的距离内使汽车停下来,保障行车安全。
32 在体育运动中的跳远项目中,运动员通过助跑获得一定的速度,然后起跳。
起跳时,脚蹬地产生的反作用力推动身体向前上方运动。
根据牛顿第三定律,地面对运动员的作用力等于运动员对地面的作用力。
同时,运动员在空中的运动轨迹遵循牛顿第一定律,保持惯性运动,直到受到重力和空气阻力的影响改变运动状态。
33 当我们推动一个较重的家具时,需要施加较大的力。
根据牛顿第二定律,家具的质量越大,要使其产生相同的加速度,所需的力就越大。
而当我们停止推动时,家具会由于惯性继续向前滑动一段距离。
4、应用带来的影响和效果41 在交通运输领域,牛顿运动定律的应用使得交通工具的设计更加科学合理,提高了运输效率和安全性。
42 体育运动中,运动员利用牛顿运动定律可以更好地掌握技巧,提高比赛成绩。
43 在日常生活中,对牛顿运动定律的理解有助于我们更有效地操作和使用各种物品,避免不必要的损伤和危险。
牛顿运动定律的实际应用牛顿运动定律是经典力学的基础,它对我们生活中的许多现象和技术应用都具有重要的指导意义。
本文将从不同角度探讨牛顿运动定律的实际应用。
一、牛顿第一定律在交通运输中的应用牛顿第一定律,也被称为惯性定律,指明了物体在没有受到外力作用时将保持静止或匀速直线运动的状态。
这一定律在交通运输中有着广泛的应用。
举个例子,当一辆汽车在高速行驶时,如果突然刹车,乘车人员会因惯性律定的作用而前倾,因为车上的人物并未得到与车身一致的减速。
这就解释了为什么在紧急刹车时,乘客会感到身体向前倾的现象。
二、牛顿第二定律在机械工程中的应用牛顿第二定律是指物体受力的加速度与作用在物体上的合力成正比,与物体质量成反比。
这一定律在机械工程中的应用非常广泛。
例如,当我们使用各种机械设备时,都离不开受力的分析以及合力的计算。
通过运用牛顿第二定律,我们可以确定机械设备所需要的驱动力大小,从而保证工程机械正常运转。
三、牛顿第三定律在航天工程中的应用牛顿第三定律是指任何一个物体受到的力都有一个等大而方向相反的作用力。
这一定律在航天工程中的应用尤为显著。
在火箭发射过程中,牛顿第三定律解释了为什么火箭能够推进。
火箭喷射出的废气作为一种反作用力,向后推动火箭本身,从而使火箭向前加速。
四、牛顿运动定律在体育运动中的应用牛顿运动定律在体育运动中也有着广泛的应用。
比如,在田径运动中,运动员发力跳远时,根据牛顿第三定律,他们在离地之前会用力蹬地,产生向上的反作用力,从而达到更高的起跳高度。
此外,在游泳比赛中,泳手腿部的蹬水动作也是应用了牛顿运动定律。
蹬水时,泳手的脚通过向后蹬水产生反作用力,推动泳手向前快速游进。
总结:通过以上几个方面的实际应用,我们可以看到牛顿运动定律在交通运输、机械工程、航天工程和体育运动等领域具有重要的作用。
不仅深化了我们对经典力学的理解,更为科学技术的发展提供了指导和支持。
结尾,牛顿运动定律的实际应用不仅局限于上述领域,还延伸到更广泛的领域,如建筑工程、电子通讯等。
牛顿运动定律应用:板、传、斜专题1.把一个质量是2kg的物体放在水平面上,用12N的水平拉力使物体从静止开始运动,物体与水平面间的动摩擦因素为0.2,物体运动2s撤去拉力,g取10m/s2。
试求:①2s末物体的瞬时速度②此后物体在水平面上还能滑行的最大距离对象运动过程解答规律2.如图所示,静止在水平地面上的玩具小鸭质量m=0.5kg,受到与水平面夹角为53°的恒定拉力后,玩具开始沿水平地面运动。
若拉力F=4.0N,经过时间t=2.0s,玩具移动距离为x=4.8m;撤去拉力F后,玩具又向前滑行一段距离。
求:(sin53°=0.8,cos53°=0.6)⑴运动过程中,玩具的最大速度;⑵撤去拉力后,玩具继续前进的距离。
对象运动过程解答规律3、在倾角θ=370的足够长的固定斜面底端有一质量m=1.0kg的物体。
物体与斜面间的动摩擦因数μ=0.25,现用轻细绳将物体由静止沿斜面向上拉动,拉力F=10N,方向平行斜面向上。
经时间t=4.0s绳子突然断了,求:(1)绳断时物体的速度大小;(2)绳断后物体继续向上运动的时间是多少?对象运动过程解答规律4、如图所示,抗震救灾运输机在某场地卸放物资时,通过倾角=30°的固定的光滑斜轨道面进行.有一件质量为m=2.0kg的小包装盒,由静止开始从斜轨道的顶端A滑至底端B,然后又在水平地面上滑行一段距离停下,若A点距离水平地面的高度h=5.0m,重力加速度g取10m/s2 ,求:(1)包装盒由A滑到B经历的时间:(2)若地面的动摩擦因数为0.5,包装盒在水平地面上还能滑行多远?(不计斜面与地面接触处的能量损耗)5、滑沙游戏中,游戏者从沙坡顶部坐滑沙车呼啸滑下.为了安全,滑沙车上通常装有刹车手柄,游客可以通过操纵刹车手柄对滑沙车施加一个与车运动方向相反的制动力F,从而控制车速.为便于研究,作如下简化:游客从顶端A点由静止滑下8s后,操纵刹车手柄使滑沙车匀速下滑至底端B点,在水平沙道上继续滑行直至停止.已知游客和滑沙车的总质量m=70kg,倾斜滑道AB长=128m,倾角θ=37°,滑沙车底部与沙面间的动摩擦因数μ=0.5.滑沙车经过B点前后的速度大小不变,重力加速度g取,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求游客匀速下滑时的速度大小.(2)求游客匀速下滑的时间.(3)若游客在水平滑道B C段的最大滑行距离为16m,则他在此处滑行时,需对滑沙车施加多大的水平制动力?6、(14分)如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接。