零输入响应与零状态响应
- 格式:doc
- 大小:21.61 KB
- 文档页数:3
rl零状态响应和零输入响应RL零状态响应和零输入响应是控制系统中两个重要的概念,它们分别描述了系统在不同输入条件下的响应特性。
在介绍这两个概念之前,我们先来了解一下什么是零状态和零输入。
零状态指的是系统起始时刻的状态,也就是系统还没有受到任何输入时的状态。
零输入则是指系统在没有外部输入的情况下自身产生的响应。
零状态响应是指系统在初始时刻没有输入而产生的响应。
换句话说,系统的初始状态会对零状态响应产生影响。
在实际应用中,我们通常通过给系统一个初始条件来观察其零状态响应。
例如,一个电路系统,我们可以将它充电到一个初始电压,然后切断外部输入,观察电路在没有输入的情况下的响应。
系统的零状态响应与其初始状态和系统自身的特性有关。
通常来说,一个稳态系统的初始状态对其零状态响应影响较小,而非稳态系统的初始状态可能会产生较大的影响。
系统的初始状态对零状态响应的影响也与系统的稳定性和数字信号的特性有关。
零输入响应则是指系统在没有外部输入的情况下自身产生的响应。
这个响应是由系统自身的特性决定的,与初始状态无关。
通过观察系统的零输入响应,我们可以了解到系统自身的特性,比如它的自然频率、阻尼比等。
零输入响应在实际应用中广泛应用于信号处理、滤波器和控制系统中。
在语音信号的处理中,我们可以通过对一段没有语音的信号进行处理,得到系统的零输入响应,从而了解系统的特性,比如它的频率响应。
在控制系统中,我们经常遇到在没有外部控制信号的情况下,系统会产生一些自身变化的情况,这就是系统的零输入响应。
总结起来,RL零状态响应和零输入响应是控制系统中的两个重要概念。
零状态响应是指系统在初始时刻没有输入而产生的响应,它与系统的初始状态和稳定性有关;零输入响应是指系统在没有外部输入的情况下自身产生的响应,它与系统的特性有关,与初始状态无关。
了解这两个概念可以帮助我们更好地理解和设计控制系统。
信号与系统第8讲零输入响应和零状态响应零输入响应和零状态响应的定义 ⏹从引起系统响应的根源出发,将系统全响应分为零输入响应和零状态响应,即 ⏹零输入响应是指没有外加激励信号(零输入),仅由系统内部初始储能(电容储有电场能、电感储有磁场能)引起的响应; ⏹零状态响应是指系统内部储能为零(零状态),仅由系统的外部的激励引起的响应。
)()()(t y t y t y zs zi +=零输入响应的求解设n 个特征根为 ()(1)(2)1210()()()'()()0n n n n n y t a y t a y t a y t a y t ----+++++=L 00111=++++--a a a n n n λλλΛ其特征方程为 12.nλλλL 零输入下,系统的微分方程为 系统的零输入响应与微分方程的齐次解相同 以下分三种情况讨论零输入响应的求解(2)若存在共轭复根,如 1,2j λαβ=±3123()(cos sin ),0n t t t zi n y t c t c t e c e c e t λλαββ=++++≥L (3) 若这些特征根中含有重根,设 r 12r λλλ===L 111121()[()],0n r t t t r zi r r n y t c c t c t e c e c e t λλλ+-+=++++++≥L L 1212(),0n t t t zi n y t c e c e c e t λλλ=+++≥L (1)若这些特征根都是单根,则由起始状态值确定待定系数【解】 特征方程为 其特征根为 λ1 = -1, λ 2= -3零输入响应为: (0)1,(0)2y y --'==得到:最后得到: 根据起始条件: 例1 已知系统微分方程应的齐次方程为: (0)1,(0)2y y --'==,求系统零输入响应。
)(3)('4)(''=++t y t y t y 0342=++λλ312()t tzi y t c e c e --=+312'()3t tzi y t c e c e --=--121=+c c 2321=--c c 251=c 232-=c 353()(),022t t zi y t e e t --=-≥例2 已知系统微分方程相应的齐次方程为:(0)1,(0)2y y --'==,求系统零输入响应。
电工响应名词解释
1.零输入响应:是指动态电路中无外施激励电源,输入信号为零,仅由动态元件(电感元件或电容元件)的初始储能所产生的响应。
2.零状态响应:是指电路在零初始状态下(即储能元件的初始能量为零),仅由外加电源激励所产生的电路响应。
3.全响应:是指当一个非零初始状态的一阶电路(只有一个动态元件)受到外电源激励时,电路的响应。
4.电阻率:又叫电阻系数或叫比电阻。
是衡量物质导电性能好坏的一个物理量,以字母ρ表示,单位为欧姆*毫米平方/米。
5.电阻的温度系数:表示物质的电阻率随温度而变化的物理量,其数值等于温度每升高1C时,电阻率的增加量与原来的电阻率的比值,通常以字母α表示,单位为1/C。
6.电导:物体传导电流的本领叫做电导。
在直流电路里,电导的数值就是电阻值的倒数,以字母ɡ表示,单位为欧姆。
7.电导率:又叫电导系数,也是衡量物质导电性能好坏的一个物理量。
大小在数值上是电阻率的倒数,以字母γ表示,单位为米/欧姆*毫米平方。
拉氏变换求零输入响应和零状态响应拉氏变换可以将微分方程转化为代数方程,从而求得系统的零输入响应和零状态响应。
1. 零输入响应当外部输入为零时,系统的响应完全由初始条件所决定,这种响应称为零输入响应。
设系统的微分方程为:y^{(n)}(t)+a_{n-1}y^{(n-1)}(t)+\cdots+a_1y'(t)+a_0y(t)=0初始条件为:y(0)=y_0,y'(0)=y_1,\cdots,y^{(n-1)}(0)=y_{n-1}对系统的微分方程两边进行拉氏变换,得到:Y(s)[s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0]=y^{(n-1)}(0)s^{n-1}+\cdots +y_1s+y_0由于外部输入为零,拉氏变换得到的Y(s) 就是系统的零输入响应Y_i(s),即:Y_i(s)=\frac{y^{(n-1)}(0)s^{n-1}+\cdots+y_1s+y_0}{s^n+a_{n-1}s^{n-1}+ \cdots+a_1s+a_0}将Y_i(s) 进行部分分式分解,并利用拉氏反变换求出系统的时域响应y_i(t),即为系统的零输入响应。
2. 零状态响应当初始条件为零,外部输入不为零时,系统的响应称为零状态响应。
设系统的微分方程为:y^{(n)}(t)+a_{n-1}y^{(n-1)}(t)+\cdots+a_1y'(t)+a_0y(t)=b_mu^{(m)}(t)+\cdots+b_1u'(t)+b_0u(t)其中,u(t) 是外部输入,m 是n 的最大值。
对系统的微分方程两边进行拉氏变换,得到:Y(s)[s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0]=U(s)[b_ms^m+\cdots+b_1s +b_0]由于初始条件为零,拉氏变换得到的Y(s) 就是系统的零状态响应Y_s(s),即:Y_s(s)=\frac{U(s)[b_ms^m+\cdots+b_1s+b_0]}{s^n+a_{n-1}s^{n-1}+\cd ots+a_1s+a_0}将Y_s(s) 进行部分分式分解,并利用拉氏反变换求出系统的时域响应y_s(t),即为系统的零状态响应。
零输⼊响应与零状态响应1.零输⼊响应与零状态响应在Matlab中,lsim函数还可以对带有⾮零起始状态的LTI系统进⾏仿真,使⽤⽅法为y=lsim(sys,u,t,x0),其中sys表⽰LTI系统,⽮量u和t分别表⽰激励信号的抽样值和抽样时间,⽮量x0表⽰该系统的初始状态,返回值y是系统响应值。
如果只有起始状态⽽没有激励信号,或者令激励信号为0,则得到零输⼊响应。
如果既有初始状态也有激励信号,则得到完全响应。
请注意lsim函数只能对⽤状态⽅程描述的LTI系统仿真⾮零起始状态响应,函数ss(对传递函数描述的LTI系统将失效,函数tf)。
例2.5 给定如图所⽰电路,t<0时S处于1的位置⽽且已经达到稳态,将其看做起始状态,当t=0时,S由1转向2.分别求t>0时i(t)的零状态响应和零输⼊响应。
图2.1 例2.4 电路图解:由所⽰电路写出回路⽅程和结点⽅程分别得到状态⽅程和输出⽅程:下⾯将⽤两种⽅法计算完全响应。
第⼀种⽅法:⾸先仿真2V电压e作⽤⾜够长时间(10s)后系统进⼊稳态,从⽽得到稳态值x0,再以该值作为初始值仿真4V电压e作⽤下的输出rf,即是系统的完全响应,为充分掌握lsim函数的使⽤⽅法,还仿真了系统的零状态响应rzs和零输⼊响应rzi。
第⼆种⽅法:构造⼀个激励信号,先保持2V⾜够长时间再跳变为4V,然后即可以零初始状态⼀次仿真得到系统的完全响应r1。
对应程序如下:C=1;L=1/4;R1=1;R2=3/2;A=[-1/R1/C,-1/C;1/L,-R2/L];B=[1/R1/C;0];C=[-1/R1,0];D=[1/R1];sys=ss(A,B,C,D); %建⽴LTI 系统systn=[-10:0.01:-0.01]'; %⽣成-10s 到-0.01s 的抽样时间,间隔为0.01sen=2*(tn<0); %⽣成机理信号的抽样值e(t)=2[rn tn xn]=lsim(sys,en,tn); %仿真t<0时的输出信号x0=xn(length(en),:); %x0记录了初始状态的值t=[0:0.01:10]';e=4*(t>=0); %⽣成激励信号的抽样值e(t)=4ezi=0*(t>=0); %⽣成零输⼊信号的抽样值e(t)=0rzs=lsim(sys,e,t); %仿真零状态响应rzi=lsim(sys,ezi,t,x0); %仿真零输⼊响应rf=lsim(sys,e,t,x0); %仿真完全响应r1=lsim(sys,[en;e],[tn;t]); %⽤另⼀种⽅法仿真完全响应2. 冲激响应与阶跃响应如果分别⽤冲激信号和阶跃信号作激励,lsim 函数可仿真出冲激响应和阶跃响应。
零输入响应与零状态响应一、零输入响应1定义在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。
取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
2简介系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
3起始状态所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。
以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。
二、零状态响应1定义在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。
三、两种响应的区别零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。
四、两种响应的判断方法如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。
五、两种响应的求解方法1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;2零状态响应:就是初始状态为零,外加激励产生的响应。
它可以通过卷积积分来求解。
零状态响应等于单位样值相应和激励的卷积。
其中,单位样值相应就是系统函数的反拉式变换或z变换。
六、两种响应之间的联系引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。
零输入响应与零状态响应
一、零输入响应
1定义
在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。
取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
2简介
系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
3起始状态
所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。
以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。
二、零状态响应
1定义
在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。
三、两种响应的区别
零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);
零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。
四、两种响应的判断方法
如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。
五、两种响应的求解方法
1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;
2零状态响应:就是初始状态为零,外加激励产生的响应。
它可以通过卷积积分来求解。
零状态响应等于单位样值相应和激励的卷积。
其中,单位样值相应就是系统函数的反拉式变换或z变换。
六、两种响应之间的联系
引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。
当激励为零,仅由动态元件储存的初始能量引起的响应叫零输入响应;当动态元件储存的初始能量为零,仅由激励引起的响应叫零状态响应;两个同时引起的响应叫全响应。
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。