数学物理方法--球函数
- 格式:ppt
- 大小:740.00 KB
- 文档页数:26
第十章球函数1000)(',)(0)()()(')()(''c z w c z w z w z q z w z p z w 级数解法一、二阶常微分方程的二阶常微分方程:数。
定解条件,逐个确定系幂级数,并代入方程和的为中心,带有待定系数表示为以级数解法:将方程的解0z ,sin cos 0'"x B x A y y y 的通解为例如:都可展为幂级数。
、处,在x x x sin cos 0 、方程的常点和奇点1为方程的常点。
点解析,则在和)常点:如果(00)()(1z z z q z p 为方程的奇点。
的非解析点,则和是)奇点:如果(00)()(2z z q z p z 否则,为非正则奇点。
为正则奇点;的二阶极点,则的一阶极点,最多是若00)()(z z q z p z00)()(k kk z z c z w 条件确定系数。
递推关系,再根据定解为零,找出系数之间的,令合并后各系数分别代入方程,合并同幂项将00)()(k kk z z c z w 法、常点邻域内的级数解2域内单值解析。
件的解存在,并在此区这个区域中满足定解条内单值解析,则方程在在、)定理:若(R z z z q z p ||)()(10)确定系数(2)0()ln()()()()()0()()()(00,1002000012121b z z z Aw z z b z z z w a z z a z z z w n s s k kks k kks 数解、正则奇点邻域中的级3两个线性无关解为:002010001)()()()()()()()(k kk k kk z z q z q z z z q z z p z p z z z p0)()(k sk k z z c z w 设解的形式为:20)(0)()()(')()(''z z z w z q z w z p z w 两边方程0)()()()(')()()('')(202020 z w z q z z z w z p z z z w z z 0)()()(')()()('')(11020 z w z q z w z p z z z w z z)()()()()()()1)((00000000k sk kk kk k s k k k kk k sk kz z c z z q z z c s k z z p z z c s k s k 零,可得判定方程:令最低次幂项的系数为0)1(00 q sp s s 是较小的根。
球函数Legendre 多项式Helmholtz 方程球坐标下分离变量得到连带Legendre 方程21d d sin 0sin d d sin μθλθθθθΘ⎛⎫⎡⎤+-Θ= ⎪⎢⎥⎝⎭⎣⎦作变换cos x θ=,()y θ=Θ改写为()22101d dy x y dx dx x μλ⎡⎤⎡⎤-+-=⎢⎥⎢⎥-⎣⎦⎣⎦讨论0μ=情况:1. 三个正则奇点:1,z =±∞,其余全平面解析 z=0邻域内两个线性无关解()2210122212!22n n n n n w z n νννν∞=+⎛⎫⎛⎫Γ-Γ+ ⎪ ⎪⎝⎭⎝⎭=+⎛⎫⎛⎫Γ-Γ ⎪ ⎪⎝⎭⎝⎭∑21n w +n 1,-1对数发散:21ln 1z-,在设()()()11nn n w z z c z ρ∞==--∑。
得到指标方程解120ρρ==得到两个线性无关解()()()()2011112!nn n z P z n n ννν∞=Γ++-⎛⎫= ⎪Γ-+⎝⎭∑()()()()()()2211ln 22121111111 (12)2!z Q z P z z n z n n n ννγψννν+⎡⎤=--+⎢⎥-⎣⎦Γ++-⎛⎫⎛⎫++++ ⎪⎪Γ-+⎝⎭⎝⎭∑2. 方程条件改变球内区域Laplace 方程轴对称边值问题20|u u f ∇==∑其中∑代表球面上的变点i ii令最下两个构成本征值问题,作变换()cos ,x y θθ==Θ,()1λνν=+变为同之前的两个结果,可以得到在0或1的邻域出发求解由于0出的解对数发散,要求ν取特殊值在1邻域得到()()()12y x c P x c Q x νν=+由于Q 发散,其系数为0,令1c 为1。
P 在1收敛,在-1对数发散3. ✧ ()11l P =✧2()()33532P x x x =- ✧ ✧✧✧✧ 由此得到的Legendre 多项式在0点的值:()()()()222!02!ll ll P l =-()2100l P +=✧ Legendre 多项式为l 次多项式,最高项系数为()22!2!l l l c l =4. Legendre 多项式的正交性Legendre 多项式为前述本征值问题的解 作为本征函数有正交性:()()110lkP x P x dx -=⎰证1:由本征值问题直接证明(仿照14.1,写出两个微分方程l 和k ,交叉相乘相减,分部积分得到相似的结果,由边界条件得到为0) 证2:求解积分()11k l x P x dx -=⎰当k l ±()(()111111121112!112!l kk l l l l l k l l d x P x dx x l dxd x x l dx ------=⎡=--⎢⎢⎣⎰⎰⎰前一项为0,继续分部积分l()12211ln x x dx --⎰ ()()()p q p q ΓΓΓ+得到结果为()!221!n l n ++5. Legendre 多项式的模方由之前的结论得到乘方求积分后,低次项全部为0,得到()()()11212!!!222!21!21l l l l l l l l c x P x dx l l l +-==++⎰6. Legendre 多项式的完备性任意在区间[-1,1]分段连续的函数f(x),在平均收敛的意义下,可以展开为级数7. Legendre 多项式生成函数将生成函数函数在0()0l l l P x t ∞==∑由此得到多项式递推关系 8. Legendre 多项式递推关系 ✧ ()()()1121()1l l l l xP x l P x lP +-+=++✧()()()()11'2''l l l l P x P x xP x P x +-=-+Laplace 方程在球坐标下求解1. 一般的Laplace 方程设在电场强度为E 0的均匀电场中放进一个接地导体球,球的半径为a 。
§12.3 勒让德多项式的应用举例勒让德多项式在物理学领域中的应用:电磁学:计算静电场分布;热学:计算温度场分布;量子力学:计算粒子的波函数;量子力学计算粒子的波函数原子分子物理:计算原子分子的碰撞截面;等离子体物理:计算电子的能量分布函数;等离子体物理计算电子的能量分布函数核物理:计算中子输运;……如下仅讨论勒让德函数在计算静电场分布中的应用。
思考题:一个半径为r=a 的导体球壳,球面上的电势分布:0 0/2(,)u u a θπθ<<⎧=⎨−求球壳内任一点的电势分布。
0 /2u πθπ<<⎩例3 设一个半径为a 的均匀介质球,其介电常数为ε 。
在离球心为 b 的地方放置个电量为求在介质球内外的电势分布方放置一个电量为q 的点电荷( b>a )。
求在介质球内外的电势分布。
rθ分析:(1)取介质球的球心为坐标原点,z 轴通过点电荷所在的位置见右图显然该问ozbq a通过点电荷所在的位置,见右图。
显然该问题具有轴对称性,与方位角度无关,即具有轴对称性。
(2)点电荷的存在将在球面上产生极化电荷,但这种极化电荷只存在球面上,因此极化电荷产生的电势满足拉普拉斯方程:)()()∞⎧2(,)0p u r θ∇=01(,(cos l p l l l l u r A r P r a θθ=∞−−=<⎪⎪⎨⎪=∑0(,)(cos )()p l ll u r D r P r a θθ=>⎪⎩∑1. 球函数的定义:实数形式的球函数:⎧cos (,)(cos ) (0,1,2,3,...,;0,1,2,3,...)sin mml l m Y P m l l m ϕθϕθϕ⎫===⎨⎬⎩⎭记号{}表示列举的函数式是线性独立的,可以任取其一。
记号{ } 表示列举的函数式是线性独立的,可以任取其。
||(,)(cos ) (0,1,2,3,...,;0,1,2,3,...)m m im l l Y P e m l l ϕθϕθ==±±±±=复数形式的球函数:可见:对于给定的l 值,共有2l+1个线性无关的球函数。