复合材料课件第二章_复合材料界面和优化设计
- 格式:ppt
- 大小:4.65 MB
- 文档页数:76
《复合材料》课程笔记第一章:复合材料概述1.1 材料发展概述复合材料的发展历史可以追溯到古代,人们使用天然纤维(如草、木)与土壤、石灰等天然材料混合制作简单的复合材料,例如草绳、土木结构等。
然而,现代复合材料的真正发展始于20世纪40年代,当时因航空工业的需求,发展了玻璃纤维增强塑料(俗称玻璃钢)。
此后,复合材料技术经历了多个发展阶段,包括碳纤维、石墨纤维和硼纤维等高强度和高模量纤维的研制和应用。
70年代,芳纶纤维和碳化硅纤维的出现进一步推动了复合材料的发展。
这些高强度、高模量纤维能够与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,形成了各种具有特色的复合材料。
1.2 复合材料基本概念、特点复合材料是由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。
复合材料具有以下特点:- 重量轻:复合材料通常具有较低的密度,比传统材料轻,有利于减轻结构重量。
例如,碳纤维复合材料的密度仅为钢材的1/5左右。
- 强度高:复合材料可以承受较大的力和压力,具有较高的强度和刚度。
例如,碳纤维复合材料的拉伸强度可达到3500MPa以上。
- 加工成型方便:复合材料可以通过各种成型工艺进行加工,如缠绕、喷射、模压等。
这些工艺能够适应不同的产品形状和尺寸要求。
- 弹性优良:复合材料具有良好的弹性和抗冲击性能,能够吸收能量并减少损伤。
例如,橡胶基复合材料在受到冲击时能够吸收大量能量。
- 耐化学腐蚀和耐候性好:复合材料对酸碱、盐雾、紫外线等环境因素具有较好的抵抗能力,适用于恶劣环境下的应用。
例如,聚酯基复合材料在户外长期暴露下仍能保持较好的性能。
1.3 复合材料应用由于复合材料的优异性能,它们在各个领域得到了广泛的应用。
主要应用领域包括:- 航空航天:飞机、卫星、火箭等结构部件。
复合材料的高强度和轻质特性使其成为航空航天领域的重要材料,能够提高飞行器的性能和燃油效率。
第二章单向层合板的正轴刚度本章的一些讲法与讲义次序不同,请同学们注意,另外一些在材料力已阐明的概念,如应力、应变等在这里不再强调,希望大家能自学与复习。
§2—1 正交各向异性材料的特点●各向同性材料●各向异性材料我们这里所指的各向异性材料的特点仅仅是指在不同方向上材料的力学性质不同(机械性能)。
●正交各向异性材料正交各向异性材料是一种特殊的各向异性材料。
其特点为: 这类材料有三个互相垂直的弹性对称面(与弹性对称面对称的点性质相同),在平行方向上的弹性质(力学特性)均相同。
如多层单向板,当不考虑纤维与基体性质的不均匀性,粘结层又很薄可以忽略,即把它写作“连续匀质”材料看,则三个弹性对称面分别为:与单层平行的面及与它垂直的纵向、横向的两个切面。
板上任何两点,在平行方向上的力学性质是一样的。
把这三个弹性平面相交的三个轴称为弹性主轴,也称为正轴。
下图是一种典型的正交个向异性材料,当厚度很小时可处理为正交个向异性板。
用宏观力学处理连续纤维增强复合材料层压板结构时,总是把单向层板作为基本单元来分析层合板。
层合板的组成增强纤维排列方向一致所粘合的薄层称单向(单层)板(层),有时把很多单层粘合在一起,各层的纤维排列方向均一致,也称单向板。
正轴的弹性常数正交各向异性弹性体,1、2、3轴为它的弹性主轴,则沿这三个轴共有9各独立弹性常数。
1E 、2E 、3E ——杨氏模量; 12G 、13G 、23G ——剪切模量; 21v 、31v 、32v ——泊松系数。
21v 表示在1方向拉伸时在2方向产生的收缩效应系数;同样,12v 表示在2方向拉伸时在1方产生的收缩效应系数。
1221v v ≠ 这点与各向同性材料不同。
并有关系式212121E v E v = 313131E v E v = 323232E v E v = ∴ 12v、13v 、23v 是不独立的系数。
顺便指出,有的文献定义12v 为1方向拉伸时在2方向的收缩系数。
复合材料结构的力学性能分析与优化设计复合材料在现代工程领域中得到广泛应用,其独特的力学性能使其成为许多领域的首选材料。
为了确保使用复合材料结构的稳定性和安全性,对其力学性能进行准确的分析与优化设计是必不可少的。
复合材料的力学性能分析需要考虑以下几个方面:材料属性、构件设计和力学行为。
首先,复合材料的力学性能是由其材料属性决定的。
复合材料由纤维和基体组成,纤维负责承载载荷,而基体则起到连接纤维的作用。
在分析复合材料的力学性能时,需要了解纤维的类型、方向和体积分数,以及基体的特性。
这些信息可以通过材料测试和实验获得,例如拉伸测试、弯曲测试和压缩测试等。
通过这些测试可以获得复合材料的弹性模量、屈服强度和断裂韧性等力学特性。
其次,构件设计是影响复合材料力学性能的关键因素。
复合材料可以通过不同的构件设计来适应不同的工程要求。
构件的几何形状、层数、层序和连接方式等都会对复合材料的力学性能产生影响。
在进行力学性能分析时,需要根据构件的实际情况建立有限元模型。
有限元分析是一种常用的数值模拟方法,通过将复合材料结构划分为小块进行离散建模,然后通过求解有限元方程得到应力、应变和变形等信息。
通过有限元分析,可以评估不同构件设计对复合材料力学性能的影响,为优化设计提供依据。
最后,力学行为是评价复合材料力学性能的关键。
复合材料的力学行为通常包括线弹性、非线性、破坏和疲劳等。
线弹性是指在小应变范围内,复合材料的应力和应变呈线性关系。
非线性行为包括塑性变形、集中变形和层间剪切等,这些行为会导致驰豫和刚度退化。
破坏行为是复合材料在超出其极限时发生的,通常包括纤维断裂、基体剥离和界面开裂。
疲劳行为是复合材料在长期受到循环载荷作用下发生的。
优化设计是通过改变材料和结构参数来增强复合材料的力学性能。
在复合材料结构的力学性能分析中,通过在有限元模型中改变材料的属性和构件的设计来优化设计。
优化设计的目标可以是最小化构件的重量、最大化构件的刚度、最大化构件的承载能力等。
复合材料(Composite materials)课程编号:07370330学分: 2学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0)先修课程:材料物理性能、材料科学基础适用专业:无机非金属材料工程、高分子材料与工程、金属材料工程教材:《复合材料》,周曦亚,化学工业出版社,2005年1月第1版开课学院:材料科学与工程学院一、课程的性质与任务《复合材料学》是材料类专业中一门包含多学科多领域的综合性课程,它涉及聚合物基、金属基、陶瓷基复合材料的性能、制备、应用及最新研究动态,是建立在高分子材料学、金属材料学、无机非金属材料学、材料设计与加工、计算机技术等课程知识的基础上,丰富学生对材料及材料学的认识,为学生熟悉复合材料和应用复合材料提供一些基础知识。
复合材料的基本任务是:1.掌握复合材料增强材料的种类、性能、制备及应用;2.掌握聚合物基、金属基、陶瓷基复合材料的历史、性能、制备及应用;3.了解复合材料的复合理论;4.了解复合材料的最新研究动态。
二、课程的基本内容及要求第一章、绪论1、教学内容(1)课程的性质、研究对象与方法、目的、任务(2)复合材料的发展概况(3)复合材料的定义、命名及分类2、学习绪论的基本要求(1)了解本课程的性质、研究对象与方法、任务;(2)了解复合材料的发展概况;(3)掌握复合材料的定义、命名,了解分类方法及具体种类。
第二章、复合材料的界面和优化设计1、教学内容(1)复合材料的复合原则(2)复合材料的界面理论2、基本要求了解复合材料的复合原则和复合理论第三章、复合材料的增强体1、教学内容(1)玻璃纤维及其制品的结构、组成、性能及制造技术(2)碳纤维的分类、性能及制造技术(3)硼纤维、碳化硅纤维、氧化铝纤维的基本性能(4)有机纤维(Kevlar纤维及超高相对分子量聚乙烯纤维)的结构、组成及性能(5)晶须及颗粒类增强材料的性能及应用概况(6)增强材料的表面处理方法2、基本要求认识增强材料在复合材料制造中的重要地位,掌握玻璃纤维、碳纤维、Kevlar纤维的结构、性能及制造技术,了解其他增强材料的结构及性能。
第1章绪论1.复合材料的定义(Composition Materials , Composite)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合材料=基体(连续相)+增强材料(分散相)分散相是以独立形态分布在整个连续相中,两相之间存在着相界面。
分散相可以是增强纤维,也可以是颗粒或弥散的填料。
2.复合材料常见分类方法:1)按性能分:常用复合材料、先进复合材料2)按用途分:结构复合材料、功能复合材料3)按复合方式分:宏观复合、微观复合4)按基体材料分:聚合物基、金属基、无机非金属基5)按增强体形式分:纤维增强复合材料、颗粒增强、片材增强、叠层复合3.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?三个结构层次: 一次结构——单层材料——微观力学一次结构二次结构——层合体——宏观力学二次结构三次结构——产品结构——结构力学三次结构设计层次:单层材料设计、铺层设计、结构设计4.复合材料力学主要是在单层板和层合板这两个结构层次上展开的,其研究内容分为微观力学和宏观力学两部分。
第2章复合材料界面和优化设计1.复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观形式复合而成的多相材料。
2.复合材料界面机能:1)传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用2)阻断效应:适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用3)不连续效应:在界面上产生物理性能不连续性和界面摩擦现象,如抗电性、电感应性、磁性、耐热性等4)散热和吸收效应:5)诱导效应3.界面效应既与界面结合状态、形态和物理、化学性质等相关,也与界面两边组元材料的浸润性、相容性、扩散性等密切相关。
4.聚合物基复合材料是由增强体与聚合物基体复合而形成的材料。
聚合物基复合材料分类:热塑性、热固性聚合物基复合材料。
热塑性聚合物基复合材料成型两个阶段:①熔体与增强体之间接触和润湿②复合后体系冷却凝固成型。
复合材料力学性能分析及优化设计随着科技的发展和经济的快速增长,复合材料作为一种新型材料在工业、航空、汽车制造等众多领域得到了广泛应用。
与传统的金属材料相比,复合材料具有重量轻、强度高、耐腐蚀、耐磨损、维修方便等优点,因此备受青睐。
然而,复合材料也存在着一些挑战,如复杂的力学性能和设计过程。
因此,本文将从复合材料的力学性能分析和优化设计两个方面进行探讨,以期更好地理解和应用这一新材料。
一、复合材料的力学性能分析复合材料由纤维增强材料(FRP)和基体材料组成,两者的相互作用对材料的力学性能产生重大影响。
在复合材料的力学性能分析中,常用的几种方法包括拉伸试验、弯曲试验、压缩试验和剪切试验。
各种试验方法都有其特点和适用范围,可以通过试验结果来评价材料的强度、刚度等性能指标。
拉伸试验是评价复合材料强度和延展性能的最基本方法之一,可以通过拉伸试验获得材料的应变-应力曲线。
应变-应力曲线可以描述材料的本构关系、屈服强度、极限强度等性质。
弯曲试验是常用的材料刚度评估方法,可以通过弯曲试验获得材料的屈曲强度和刚度等性能参数。
当复合材料承受压缩载荷时,会产生复杂的应力分布和屈曲失稳。
压缩试验可以帮助理解复合材料的压缩性能和屈曲失稳行为。
剪切试验主要用于评估复合材料层间剪切强度和剪切模量等性质。
二、复合材料的优化设计复合材料的优化设计是利用材料的力学性能和结构特点来设计出更优的产品。
优化设计过程包括确定材料的组成、结构、工艺和制造过程等方面。
优化设计的目标是使产品在保持一定强度和刚度的基础上,尽可能地降低材料的成本和重量。
在复合材料组成的选择方面,要考虑纤维和基体材料的性能差异、接合强度等因素。
不同的纤维材料具有不同的强度和刚度,常用的纤维材料包括碳纤维、玻璃纤维、芳纶纤维等。
基体材料的选择则要考虑其能否有效地固定纤维、与纤维材料相容性等。
在结构设计方面,可以通过分析材料的应力分布等参数来确定材料的层数和厚度,以达到减轻重量的目的。
复合材料的力学性能研究与优化设计一、引言复合材料无疑是现代工业发展中的杰出代表之一。
它的独特性能和广泛用途使得它在各个领域都得到了广泛应用。
它被广泛应用于民航、航空航天、汽车、能源等众多领域中,并且有着很好的前景。
在运用中不断发现复合材料的材料机械性能不足以满足实际工况,如何对材料的力学性能进行研究和优化设计就成为了一个重要的问题。
二、复合材料的力学性能分析复合材料的力学性能是指它在受到力的作用时所表现出来的抗拉、抗压等力学指标。
在复合材料的制备过程中,我们需要在设计中预测这些力学性能,以确保在实际使用过程中不会出现问题。
下面主要介绍复合材料的几种力学性能。
1. 抗拉性能复合材料的抗拉性能是指材料在外力作用下承受抗拉作用的能力。
它与材料的弹性模量有关。
一般情况下,复合材料的抗拉性能略低于其弹性模量。
抗拉强度随纵向、横向的拉伸方向不同而存在差异。
在含有纤维增强的复合材料中,纤维、复合材料矩阵以及纤维与复合材料矩阵之间的界面起到了调节橡胶和增强材料之间作用力的作用,因此它们之间的粘接强度对材料的抗拉性能有着很大的影响。
2. 抗压性能复合材料的抗压性能是指材料在受外力压缩时承受抗压作用的能力,表现为材料的压缩强度。
抗压强度低于抗拉强度,甚至低于抗剪强度。
增强纤维在复合材料中的数量和比例、增强纤维的排列和取向,复合材料矩阵的类型、性质、厚度、界面结合能力等都会影响复合材料的抗压性能。
3. 抗剪性能复合材料的抗剪性能是指材料在受外力剪切时表现出来的力学指标。
材料的抗剪强度取决于增强纤维的类型、增强纤维的取向、纤维与矩阵的结合力,以及材料的界面特性等因素。
4. 弯曲性能复合材料的弯曲性能是指材料在外力作用下弯曲的能力,常用的指标有弯曲强度和弯曲模量。
弯曲性能最受影响的因素是增强纤维的类型和取向、矩阵的性质、界面黏着力和裂纹的形成和扩展。
三、复合材料的力学性能优化设计为了使复合材料具有在实际工作环境中所需要的力学性能,需要通过优化设计来实现。