习题课 (4) 含参积分与二重积分题目_46401582
- 格式:doc
- 大小:214.00 KB
- 文档页数:4
第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。
v1.0可编写可改正第九章二重积分习题 9-11、设I1( x2y 2 ) 3 d,D1此中D1{( x, y) | 1 x1, 2y2} ;又 I 2( x2y2 )3 d ,D2此中 D 2{( x, y) | 0 x1,0y2} ,试利用二重积分的几何意义说明I1与 I2之间的关系 .解:因为二重积分I1表示的立体对于坐标面x 0 及y0对称 , 且I1位于第一卦限部分与 I 2一致,所以 I 14I 2.2、利用二重积分的几何意义说明:(1)当积分区域 D 关于 y 轴对称, f (x, y) 为 x的奇函数 , 即f (x, y) f (x, y)时,有 f (x, y)d0 ;D(2)当积分区域 D 关于 y 轴对称, f (x, y) 为 x的偶函数 , 即f ( x, y) f ( x, y) 时,有 f ( x, y)d2 f (x, y)d, 其中D1为D在D D1v1.0 可编写可改正x0 的部分.并由此计算以下积分的值,此中D {(,) |x2y2 2 }. x y R(I)4d; (II)y222;(III)y3 cosx2 d. xy R x y dD 1 x2yD D解:令 I f ( x, y)d,I1 f ( x, y)d, 此中D1为D在x0 的部分,D D1(1)因为 D 对于 y 轴对称, f (x, y) 为 x 的奇函数,那么I表示的立体对于坐标面于是x 0 对称,且在 x 0 的部分的体积为I1,在x0 的部分的体积为I1, I 0 ;(2)因为 D 对于 y 轴对称, f (x, y)为x的偶函数,那么 I 表示的立体对于坐标面 x 0 对称,且在 x 0 的部分的体积为I1,在x0 的部分的体积也为I1,于是 I2I1.(I)因为D{( x, y) | x2y2R2 } 对于y轴对称,且 f ( x, y)xy 4为 x 的奇函数 ,于是xy4 d0 ;D(II)由于 D {( x, y) | x2y 2R2 } 关于x 轴对称 ,且f ( x, y) y R2x2y 2为 y 的奇函数,于是y R 2x2y 2 d0 ;D(III)由于D{( x, y) | x2y2R2 } 关于x轴对称, 且f ( x, y)y3 cosx y3 cosxd0 .x2y2为 y 的奇函数,于是2y21D 1 x3、依据二重积分的性质, 比较以下积分的大小:(1) I1( x y)2 d与I2( x y)3 d, 此中D是由x轴、y轴与直线D Dx y 1所围成;解:因为在 D内 , 0 x y 1 ,有 0 ( x y)3( x y) 2, 所以I 2( x y) 3 d( x y) 2 d I 1.D D(2) I1ln( x y)d与I2[ln( x y)] 2 d,D D此中 D {( x, y) | 3 x 5,0 y1} .解:因为在 D 内,e 3 x y 6 ,有 ln( x y) 1, ln( x y) [ln( x y)] 2,所以I 1ln( x y)d[ln( x y)] 2 d I 2.D D4、利用二重积分的性质预计以下二重积分的值:(1) I xy(x y1)d,D此中 D{( x, y) | 0x1,0 y2} ;解:因为 D 的面积为 2 ,且在 D内 , 0 xy( x y 1) 8 ,那么0 0 2xy( x y 1)d8 2 16 .D(2) I( x2 4 y29)d,D此中 D{( x, y) | x2y24} ;解:因为 D 的面积为 4 ,且在 D 内,9 x2 4 y 29 13 3 y225 ,那么369 4( x2 4 y29)d25 4 100 .D(3) I d,cos2x cos2D 100y此中 D{( x, y) | | x || y | 10} ;解:因为 D 的面积为200 ,且在 D 内,111 102 100 cos2 x cos2y , 那么100100= 200d200 2 .51102D 100cos2 x cos2 y100习题 9-21、计算以下二重积分:(1)( x2y2 )d, 此中D是矩形地区 :| x | 1,| y | 1 ;D解:y2 )d dx ( x 2y 2 )dy 2 (x 21)dx8 .(x2111D11133(2)xye x2y2d, 此中D{( x, y) | a x b, c y d} ;D解:22b d x 2y2 1 d2c2b x2dx .(x y )d dx( xye)dy(e e)xeDa c2a1b2e a2 d 2e c 2(e)(e) .4(3)(3x 2 y)d, 此中D是由两坐标轴及直线x y2所围成的闭地区;D解:(3x2y)d dx(3x2y)dy(42x2x2)dx20.2 2 x2D0003(4)xcos(x y)d ,此中 D 是极点分别为( 0,0),(,0) 和 ( ,) 的三角形D闭地区 .xcos(x y)d xxcos(x y)dy x(sin2x sinx)dx 3 .解:dxD00022、画出积分地区 , 并计算以下二重积分:(1)x yd, 此中D是由两条抛物线y x , y x2所围成的闭地区;D1x2 17 6解:44x yddxx2x ydy3 0 (xx )dx 55 .D(2)y d, 此中 D 是由直线 yx, y 2 x 及 x 1, x 2 所围成的闭地区;Dx解:y d2 dx2 xDx1xy32xdx9xdy.214(3)(2x y) d , 此中 D 是由 yx, y1及 y 2 所围成的闭地区;Dx12 )dy解:(2xy)ddy 1 (2x y)dx(2y 2 119 .2 y 2D1y1y6(4)e x y d , 此中 D 是由 | x | | y |1 所确立的闭地区 .Ddxx 1 1dx x 1解:e x y de x y dy0 e x y dyD1x 1x 1e 1)dx(e e2 x 1)dx e 3e 1e 1 .0 (e 2x 1112 2e 2 2eea:=0..1;b:=x-1..-x+1;f:=exp(x+y);int(f,y=b);int(int(f,y=b),x=a);simplify(");3、假如二重积分f2 ( y)的乘D {( x, y) | a 即f ( x, y)dD证明:f (x, y) dDb df ( x, y)d的被积函数 f ( x, y) 是两个函数f1 (x) 及D积,即 f ( x, y) f1 (x) f 2 ( y),积分区域x b, c y d} ,证明这个二重积分等于两个单积分的乘积,b df1 ( x)dx f 2 ( y)dy.a cb d b ddx f ( x, y)dx dx f1 ( x) f 2 ( y)dya c a cb df1 (x)f2 ( y)dy dx f1 (x)dx f 2 ( y) dy .a c a c4、化二重积分I f ( x, y)d 为二次积分(分别列出对两个变量先后序次D不一样的两个二次积分), 此中积分地区D是:(1) 由曲线y ln x 、直线x 2及 x 轴所围成的闭地区;图形 >plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..,color=1);2ln x ln 22解: Idx f ( x, y) dy dye yf ( x, y) dx .100(2) 由y轴及右半圆xa2y 2所围成的闭地区;图形 >plot([(1-x^2)^(1/2), -1*(1-x^2)^(1/2)],x=0..1, color=1);a a2x22 f ( x, y)dy a a 2 y2解: Idxa 2xdy f (x, y)dx .0a0(3) 由抛物线y x2与直线 2x y 3所围成的闭地区.图形 > plot([x^2, 3-2*x],x=-3..1, color=1);1y3 y 9解: I dy f ( x, y)dx dy2 f ( x, y)dx .0y1y5、更换以下二次积分的积分次序:1 (1)dy解: I1 (2)dy1yf ( x, y)dx ;y1x0 dx x2 f ( x, y)dy .ee yf ( x, y) dx ;e ln x解: I dx f (x, y) dy .101 1 y 2(3)dy f ( x, y)dx ;0 2 y解: I2 dx2 x x 21 f (x, y) dy .2 x1x 2f ( x, y)dy2 2 x (4)dx dxf ( x, y) dy ;11 2 y 解: Idyf (x, y) dx .ysin x(5)0 dxsin x2f ( x, y)dy ;图形>plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]],x=0..Pi,color=1);dyf ( x, y)dx1 arcsin y解: I2 arcsin y dyf ( x, y)dx .1arcsin y2a 2 ax22 x (6)dx 2 ax x 2f ( x, y) dy1dx 0f ( x, y) dy .图形> plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]],x=0..2,color=1);a aa 2y 2a2 a解: I0 dy y 2f (x, y) dxdya2 2f ( x, y) dx2aa y2a 2aady y 2 f ( x, y)dx .2 a6、设平面薄片所占的闭地区D 由直线 x y2, y x 和 x 轴所围成 , 它的面密度(x, y)x 2 y 2 , 求该改薄片的质量 .图形 > plot([2-x,x], x=0..2,y=0..1,color=1);解: m( x, y)d1dy2 x y 2 )dx0 y(x 2D184 y4 y 28 y 34(3) dy.337、求由平面 x 0, y0, z 1, x y 1 及 z 1 x y 所围成的立体的体积 .图形 > with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y=0..1-x):display({A,B,F,G,H},grid=[25,20], axes= BOXED , scaling=CONSTRAINED,style= PATCHCONTOUR);解: V[(1 x1dx 1 x y) dy 1121y) 1] d(x(1x) dx.D002038、为修筑高速公路, 要在一山坡中辟出一条长500m ,宽20m的通道 , 据丈量 ,以出发点一侧为原点, 往另一侧方向为x 轴(0x20), 往公路延长方向为y 轴( 0y 500 ),且山坡高度为z10 sin y sin x ,试计算所需50020挖掉的土方量.图形 > plot3d(10*sin(Pi*y/500)+ sin(Pi*x/20),y=0..500,x=0..20);解: V zd 20500(10 sin y sin x)dy70028(m3 ) . 0dxD0500209、画出积分地区 , 把积分I f ( x, y)d表示为极坐标形式的二次积分, 其D中积分地区 D 是:(1)D {(,) |x2y2a2,x0}(a0);x y图形 > plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)], x=0..1,color=1);解: I2daf ( r cos, r sin)rdr . 02(2)D {(,) |x2y22} x y y;图形 > plot([1+(1-x^2)^(1/2),1-(1-x^2)^(1/2)],x=-1..1,color=1);解: x2y 2 2 y r 22r sin r 2 sin, 于是I d 2 sin f ( r cos, r sin)rdr .(3)D{( , ) | a 2x 2 y 2b 2 }, 此中 0 ab ;x y图形 > plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1);解: I2 bf ( r cos , r sin)rdr .da(4)D{( , ) | 0x 1,0y x 2 }.x y图形 > plot([x^2,[[1,0],[1,1]]], x=0..1,color=1);解: yx 2r sinr 2 cos 2r sectan ,x 1 r cos 1r sec , 于是I4 dsec f ( r cos , r sin )rdr .sec tan10、化以下二次积分为极坐标形式的二次积分:11(1)dx f ( x, y)dy ;图形 > plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1);解: x 1 r cos 1 r sec y 1r sin1rcsc,, 于是Isec f (r cos , r sin )rdr2dcsc 4 df (r cos , r sin ) rdr .41 1 x 2x2y 2)dy ;(2) dx1 x f ( 0图形 > plot([(1-x^2)^(1/2),1-x],x=0..1,color=1);解: y1 xr sin1 r cos r1 , 于是sincosI1f (r )rdr .2 d 1cossin11、把以下积分为极坐标形式, 并计算积分值:2a 2 ax x 2( x 2y2)dy ;(1)dx图形 > plot((2*x-x^2)^(1/2), x=0..2,color=1);解: y 2ax x 2r sin 2ar cosr 2 cos 2r 2a cos ,于是 I2d2a cosr 3 dr 4a 4 2 cos 4 3 a 4.413x1dy ;(2)dxx 2y 2x图形 > plot([3^(1/2)*x,x], x=0..1,color=1);解: x1r cos 1r sec , 于是I3 dsec 3sec dln23 .0 dr44123 adx3 xx2y 2dya a 2x 2x2y2dy .(3)233 dxa2图形 > plot([3^(1/2)*x/3, (1-x^2)^(1/2)],x=0..1,y=0..,color=1);解: x1 r cos 1 r sec , 于是v1.0 可编写可改正a2dra 3a 3.I 6 d6 dr3 01812、利用极坐标计算以下各题:(1)R 2x 2y 2 d , 此中 D 为圆域 x 2y 2 Rx ( R 0 ) ;D图形 > plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解: x 2y 2 Rxr 2Rr cos r R cos , 于是Id Rcos R2 r2 rdr1 3(42 0 R) .233(2)ln(1 x2y 2) d , 此中 D 为圆 x2y21及坐标轴所围成的在第一D象限内的闭地区;图形 > plot((1-x^2)^(1/2),x=0..1,color=1);解: I2d1r2) rdr (2 ln 2 1) .ln(1 40 0(3)arctan yd, 其 中 D 为 圆 周 x 2y 2 1 , x 2y 24 及 直 线Dxy 0, y x 所围成的在第一象限内的闭地区.图形>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1);v1.0 可编写可改正解: I2rdr3 4d3 2 .4 d12 06413、选择适合的坐标计算以下各题:(1)x 2, 此中 D 是直线 x2, yx 及曲线 xy1所围成的闭地区;y 2dD图形 > plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1);解: I2 xx 2 2 (x 3x) dx91dx 12 dy1.xy4(2)sin x 2y 2 d, 此中 D 是圆环形地区2x 2y 242 ;D图形 > plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1);解: I2 d2r sin rdr62 .(3)(x 2y 2 )d , 此中 D 是由直线 yx, yx a, ya, y 3a ( a 0 )D所围成的闭地区;图形>plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1);3 ay (x2y 2)dx3aa 2y a 314a 4.解: I)dx adya (2ay2y a3v1.0 可编写可改正(4)|1 x 2y 2 | d , 此中 D 为圆域 x 2 y 24 .D图形 > plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)], x=-2..2,color=1);2 d1 2 21)rdr9 5 .解: I(1 r 2)rdrd( r 212214 、计算以xOy 面上的圆周 x 2 y 2 ax 围成的闭地区为底, 而以曲面z x 2 y 2 为顶的曲顶柱体的体积 .图形 > plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解: x 2y 2axr 2ar cosra cos , 于是( x2y 2)da cos 3dra 4cos 43 a 4. Vdd2r2D2423215、某水池呈圆形 , 半径为 5 米 , 以中心为坐标原点 , 距中心距离为 r 处的水深5米 , 试求该水池的蓄水量 . 为1 r 2图形 > plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解: V255rdr 5 (ln 2ln 13)16.29 ( 米 3).d21 r16、议论并计算以下广义二重积分:d, 此中 D{( x, y) | xy 1, x 1} ;(1)Dx p y q1q 1 11p q 01解: Idx 1dy1 dx.py q 1 q 1 x pq1xx(1 q)(q p)v1.0可编写可改正即当 p q 1 时,广义二重积分收敛, 且I1.1)( p( q q)(2)d, 此中D{(,) |x2y21};(x2y2 ) p x yD21 2 p 1 1解: I d dr.01r2 p 1p1即当 p1时 , 广义二重积分收敛, 且Ip. 1。
题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) (3分)[2]二重积分 xydxdy (其中D :D2(3 分)[3]若区域 D 为 0W y w X 2,|X|W 2,则xy dxdy =Df(x 2, y 2)dxdyD2 2f(x , y )dxdyD1(3分)[5]设f(x,y)是连续函数, 0 dx1一、选择(2 分)[1] (16小题,共53.0分)(A)1(C ) 21(D )- 4答()3264(A ) 0;( B )(C )(D ) 25633答((3分)[4]设D 1是由ox 轴, oy 轴及直线 x+y=1所圈成的有界闭域, 的连续函数,则二重积分)f 是区域D : |x|+|y|w 1上(A) 2(B) 4(C ) 8(D)-2(A) (B) 1 dy 0 J1dy 0丿 f(x,y)dx 2 1dy y 2 1 1 f(x,y)dx (C) 1 0d y (D) 2°dy f(x, y)dx f(x, y)dx . :产 f(x, y)dx -2 1 dy y~1 1 f (x, y)dx (3分)[6]设函数f (x,y )在区域D : y 2W — x ),y > x 2上连续,则二重积分f (x, y) dxdy可D化累次积分为 0(A) dx 1 1(C) 0dyx 2-f(x,y)dyy 2y f (x,y)dxy(B) dx1 1(D) 0dyx 2 x f (x, y)dyy 2y f (x, y)dx0< y W x 2,0< X W 1)的值为 则二次积分f (x, y)dy(3分)[7]设f (x,y )为连续函数,则二次积分 ;dy 1;2—2yf (x, y )dx 可交换积分次序为1 、页 (3):^3 x 2(A) dx 0 0 f (x,y)dy 1 dx 0f (x,y)dy127、21、3rv(B) 2dx 00 f (x, y)dy1dx 0 f(x, y)dy2dx 02'13 x 2(C) dx 0 厶 f (x,y )d y(D) ?d 0 32cos f (r cos ,r sin )rdr2sin f (x,y)dy(3分)[8]设f (x,y )为连续函数,则积分 dx f (x,y)dy dx f (x, y)dy可交换积分次序为1 y2 2 y(A) dy 0丿 0 f(x,y)dx 1 dy 0 f(x,y)dx 1 x 2 2 2 x (B) dy 0 J 0 f (x,y)dx 1 dy 0 f (x, y)dx1 2 y(C) dy 0 J曲f (x,y)dx1 2 x (D) dy 0丿x 2 f (x,y)dx(4分)[9]若区域D 为(x - -1)2+y 2< 1,则二重积分 2 0 02cos 2 i (A )0d1 0 x2 ) f (x, y )dxdy 化成累次积分为 F(r, )dr (B) 2cos0 F(r, )dr 2cos F(r, )dr(D) ;d 2cosF(r, )dr 其中 F(r, B )=f(rcos 9 ,rsin 0 )r. (3分)[10]若区域D 为x 2+y 2w 2x ,则二重积分 (x______ 答( )y )'.x 2 y 2 dxdy 化成累次积分为 (A) [d 2 2cos0 (cossin ) 2r cos rdr(B) 0 (cos sin )d2cos 3 r 3drD2cos 3(C) 2 02 (cos sin )d 0 r dr答()(3 分)[15]若区域 D 为 |x|w 1,|y|w 1,则xe cos(xy) sin(xy)dxdyD(A) e; (B) e 1; (C) 0;(D) n .答((4 分)[16]设 D : x 2+/w a 2(a >0),当 a=时,Ja 2 x 2 y 2 dxdy(D) 2 2 (cos2sin )d2cosr 3dr(4 分)[11]设 h答()[ln(x y)]7dxdy,l 2 (x y)7dxdy,l 3sin 7(x y)dxdy 其中 D 是DDD由 x=0,y=0, x y-,x+y=1所围成的区域,贝U 11, 12, 13的大小顺序是2(A) IK |2V |3; (C)l l V l 3 V l 2;(B) |3V l 2V l i ; (D)l 3V l i V I 2.(5分)[12]设I弊—,则I 满足ix |y 11cos X sin y2 , c(A )3 l21 (C) DI- 2 (B)2 I 3 (D) 1 I 0(4 分)[13]设 x y1其中D 是由直线x=0,y=0,及x+y=1所围成的区域,2则I 1, 12,13的大小顺序为(A) 13V I 2V I 1; (C)l 1V I 3V I ;(B)l 1V l 2V l 3;V V(3分)[14]设有界闭域 D 1与D 2关于oy 轴对称,且D 1A D 2= ,f (x,y )是定义在D 1U D 2上的连续 函数,则二重积分2f (x , y)dxdyD2(A) 2 f (x , y)dxdyD12(B) 4 f (x , y)dxdyD 22(C) 4 f (x , y)dxdyD 11(D)2D 2 2f(x , y)dxdy(A)1(B )32(3分)[6]设D : O W x w 1,0 < y w 2(1 — x),由二重积分的几何意义知■y dxdy = ____________三、计算(78小题,共331.0分)(3分)[1]设f(x,y)为连续函数,交换二次积分2 y0dy 亠 f (x, y)dx2 y 的积分次序。
习题课二重积分的计算一、主要内容二重积分的计算方法是累次积分法,化二重积分为累次积分的步骤是:①作出积分区域的草图②选择适当的坐标系③选定积分次序,定出积分限1。
关于坐标系的选择这要从积分区域的形状和被积函数的特点两个方面来考虑看图定限 —穿越法定限 和不等式定限先选序,后定限①直角坐标系ⅰ。
先 y 后 x ,过任一x ∈ [ a , b ],作平行于 y 轴的直线穿过D 的内部从D 的下边界曲线)(1x y ϕ=穿入—内层积分的下限从上边界曲线)(2x y ϕ=穿出—内层积分的上限ⅱ。
先 x 后 yy 过任一 yy ∈[ c , d ] 作平行于 x 轴的直线定限左边界)(1y x ψ=——内层积分的下限右边界)(2y x ψ=——内层积分的上限则将D 分成若干个简单区域再按上述方法确定每一部分的上下限分片计算,结果相加②极坐标系积分次序一般是θ后先r 过极点O 作任一极角 为 θ]),[(βαθ∈的射线从D 的边界曲线 )(1θr 穿入从 )(2θr 穿出ⅲ。
如D 须分片)(1θr ——内下限)(2θr —内上限具体可分为三种情况)()(,21θθβθαr r r ≤≤≤≤⑵极点在D 的边界上)()(,21θθβθαr r r ≤≤≤≤是边界在极点处的切线的极角βα,)(1θr 绝大多数情况下为0⑶极点在D 的内部)(0,20θπθr r ≤≤≤≤化累次积分后外限是常数内限是外层积分变量的函数或常数极坐标系下勿忘 r⑴极点在D 的外部∫∫∫∫=D Ddxdy x y f dxdy y x f ),(),(——称为关于积分变量的轮换对称性是多元积分所独有的性质奇函数关于对称域的积分等于0,偶函数关于对称域的积分等于对称的部分区域上积分的两倍,完全类似于 对称区间上奇偶函数的定积分的性质简述为“你对称,我奇偶”①、②、③简单地说就是④若 DD 关于直线 y = x 对称。
习题课 (4) 含参积分与二重积分
一. 含参积分
1. 设dt ds e x f x x
t s ⎰⎰⎥⎦
⎤⎢⎣⎡=-02
)(, 求)(x f '与)(x f .
2. 求)(x f ', 其中⎰
-=x
x
y x
dy e x f cos sin 12
)(.
3. 求⎰+→++a
a
a a x dx
12
20
1lim
4. 能否交换顺序?
dx e y
x y x y ⎰
-→10
20
2
2
lim
二. 二重积分
1. 将二重积分
()dx y x f D
⎰⎰
,, ⎪⎩
⎪
⎨⎧≥≥-+≤-+00204:2222y ax y x ax y x D ,
化成累次积分,交换积分次序。
2.
)(t f 为连续函数, D 是由1,1,3-===x y x y 围成的区域, 则
=+⎰⎰D
dxdy y x
xyf )(22
.
3. 设)(x f 在[]b a ,上连续, 利用二重积分证明:
⎰⎰-≤⎥⎦
⎤⎢⎣⎡b a b a dx x f a b dx x f )()()(22
其中等号当且仅当)(x f 为常数时成立.
4. 交换积分()⎰⎰π
20
sin 0
,x
dy y x f dx
的积分次序.
5. 不计算,判断二重积分⎰⎰
≤+--4
3
22221y x dxdy y x 的符号.
6. 设σd y x I D
221cos +=⎰⎰,()σd y x I D
222cos +=⎰⎰,()
σd y x I D
2
223cos +=⎰⎰,其中
{}
1),(22≤+=y x y x D ,则( )
(A )123I I I >>
(B )321I I I >>
(C )312I I I >>
(D )213I I I >>
7. 设{
}
0,0,42
2≥≥≤+=y x y x D ,)(x f 为D 上的正值连续函数,b a ,
为常数,则
=+
+⎰⎰
σd y f x f y f b x f a D
)
()()()( ( D )
(A)πab (B)
π2ab (C) π)(b a + (D) π2
b a +
8. 求[]⎰⎰+=D
dxdy y x I , 其中10,10:≤≤≤≤y x D , []y x +为取整函数.
9. 计算⎰⎰=D
ydxdy I ,22,2,0,2y y x y y x D --
===-=由围成.
6.(92)计算⎰⎰
⎰⎰+=1
2
121
4
12
1y
y
x
y y
x
y dx e dy dx e dy I
10. 求二重积分
⎰⎰-D
dxdy y x ,)(其中
{}
x y y x y x D ≥≤-+-=,2)1()1(),(22
11. 计算二重积分 .)sin(22)
(22
dxdy y x e I D
y x +=
⎰⎰-+-π其中积分区域
D=}.),{(22π≤+y x y x
12. 设函数()f u 连续, 区域{}
22(,)2D x y x y y =+≤, 则()D
f xy dxdy ⎰⎰等于
(A
)11()dx f xy dy -⎰⎰
. (B
)20
2()dy f xy dx ⎰⎰.
(C )2sin 20
0(sin cos )d f r dr πθθθθ⎰⎰
.
(D )2sin 20
(sin cos )d f r rdr π
θθθθ⎰⎰
13. 设区域}
{,0,1),(22≥≤+=x y x y x D 计算二重积分
⎰⎰
+++=D
dxdy y
x xy
I 2
211。
14. 设),(y x f 为连续函数,则
rdr r r f d ⎰
⎰40
1
)sin ,cos (π
θθθ等于【 】
(A )
⎰
⎰
-220
12),(x x
dy y x f dx
(B )
⎰
⎰
-220
10
2
),(x dy y x f dx
(C )
⎰
⎰
-2
20
12),(y y
dx y x f dy
(D )
⎰
⎰
-220
10
2),(y dx y x f dy
15. 设()f x 为连续函数,⎰
⎰=
t
t
y
dx x f dy t F 1
)()(,则)2(F '等于
(A) 2()2f (B) ()2f (C) –()2f (D) 0
16. 设}0,0,2),{(2
2
≥≥≤
+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最
大整数. 计算二重积分⎰⎰++D
dxdy y x
xy .]1[22
17. 求二重积分()⎰⎰D
dxdy xy ,1,max 其中D=(){}20,20,≤≤≤≤y x y x
18. 设函数)(x f 连续,()(),,2
222dxdy y x y x f v u F uv
D ⎰⎰
++=
其中区域uv D 为图中阴影部分,则
u F ∂∂=( )。
(A )()2
u
vf (B )()2
u f u
v
(C )()u vf (D )()u f u
v。