常见金属晶体结构晶体学
- 格式:ppt
- 大小:5.69 MB
- 文档页数:19
金属常见的三种晶体结构
金属是由原子键紧密排列在一起而形成的固态,它们的结构可以分为三种:非晶态,单斜晶格和立方晶格。
非晶态是一种金属的结构,它和晶态有很大的不同,因为它没有安排成典型排列。
它是由大量低秩排列的原子构成的,没有晶面,且具有较低的密度。
这种结构经常出现在薄膜中,但也有一些金属在处于高温状态时以非晶态存在的特点。
单斜晶格是金属中最普遍的晶体结构。
它的特点是原子被排列在能量最低的八位置中,将空间划分为六个同心圆,将其围绕中心共轭,形成金属化合物中最常见的晶格结构。
该晶体结构非常稳定,在Big Bang中释放出来的原子大多就以单斜晶格结构存在。
另一种金属常见晶体结构是立方晶格结构。
立方晶格由很多个单元格组成,每个小单元中心都有一个原子,形成一个正交的立方晶格,原子的排列形成一个空mid的和的画面,可以把金属想象为一个巨大的正方体,巨大的正方体是由正方体组成的,原子是此晶体结构的组成单位。
总之,金属通常以非晶格、单斜晶格和立方晶格三种晶体结构存在,它们的生成和行为直接关系到金属的特性。
金属的宏观特性及其在特定情况下的表现受它们的晶体结构紧密相关。
理解金属的晶体结构对科学家们的研究和应用非常重要。
金属中常见的三种晶体结构
金属是人类理解和感知宇宙规律的基础,我们日常生活中实用性最好的材料就是金属。
而
金属的晶体结构是深入研究金属的重要方面,也是决定金属特性的基础之一。
因此,今天
我们就来讨论金属中常见的三种晶体结构:六方晶格、面心立方晶格和菱形晶格。
六方晶格是最常见的金属晶体结构形式,是对称分布最均匀、最节约空间的结构。
它内部
是由晶胞堆积构成,每个晶胞由六颗原子构成,其条形运动立方体形状形成六个晶面。
这
种晶体结构可以满足大多数金属原子的包裹,也是大多数金属表面及体内的晶体结构形式。
面心立方晶格结构是一种复杂的晶体结构,在它的晶胞内部分布着八颗原子,分布方式是
四个原子均匀的放置于晶胞的八个顶点,另外四颗原子均匀的放置于晶胞的六个棱面中间,这种特别的原子分布使晶粒有了更高的密度。
它是一种特殊的光学结构,通常在失去平衡的金属表面形成,并影响金属的光学性质。
菱形晶格结构是四颗原子布置而成的基本晶胞,菱形晶格的核心由四个六面体构成,每一
个六面体都可以由四个原子组成,因此在晶胞中有四颗原子存在。
这种晶体结构的优点是
比较均匀的原子分布,原子离聚力也更大,可以定义更长的晶格参数,可以表示物理和化
学性质。
总而言之,金属中常见的三种晶体结构就是六方晶格、面心立方晶格和菱形晶格,他们各有自身的特点,这些特点直接体现在金属的结构和性能上,研究它们可以揭示金属的秘密,从而使我们更好地应用金属。
金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。
每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。
典型的例子是铜、铝和金。
2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。
每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。
铁和钨是常见的具有BCC结构的金属。
3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。
这些层之间存在垂直堆叠,形成一个紧密堆积的结构。
典型的例子是钛和锆。
除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。
这些不同的结构对于金属的性质和行为有着重要的影响。
1。
金属的晶体结构1、金属的晶体结构金属在固态下原子呈有序、有规则排列。
晶体有规则的原子排列,主要是由于各原子之间的相互吸引力与排斥力相平衡。
晶体特点:(1)有固定熔点,(2)原子呈规则排列,宏观断口有一定形态且不光滑(3)各向异性,由于晶体在不同方向上原子排列的密度不同,所以晶体在不同方向上的性能也不一样。
三种常见的晶格及分析(1)体心立方晶格:铬,钒,钨,钼,α-Fe。
1/8*8+1=2个原子(2)面心立方晶格:铝,铜,铅,银,γ-Fe。
1/8*8+1/2*6=4个原子(3)密排六方晶格:镁,锌。
6个原子•用以描述原子在晶体中排列的空间格子叫晶格体心立方晶格面心立方晶格密排六方晶格2、金属的结晶结晶的概念:金属材料通常需要经过熔炼和铸造,要经历有液态变成固态的凝固过程。
金属由原子的不规则排列的液体转变为规则排列的固体过程称为结晶。
结晶过程:不断产生晶核和晶核长大的过程冷却曲线:过冷现象:实际上有较快的冷却速度。
过冷度:理论结晶温度与实际结晶温度之差,过冷度。
金属结晶后晶粒大小一般来说,晶粒越细小,材料的强度和硬度越高,塑性韧性越好为了提高金属的力学性能,必须控制金属结晶后晶粒的大小。
细化晶粒的根本途径:控制形核率及长大速度。
细化晶粒的方法:(1)增大过冷度,增加晶核数量(2)加入不熔物质作为人工晶核(3)机械振动、超声波振动和电磁振动金屬晶體缺陷:金屬材料以肉眼觀察其外表似乎是完美的;實際不然,金屬晶體含有許多缺陷,這些缺陷可分類為點缺陷、線缺陷及面缺陷。
這些缺陷對金屬材料的性質有很重要的影響。
點缺陷:金屬最簡單形式的點缺陷就是空孔空孔是最簡單形式的點缺陷,原子在結晶格子位置上消失间隙原子置代原子線缺陷:線缺陷一般通稱為「差排」(dislocation) 。
差排的產生主要與金屬在機機加工時的塑性變形有關;亦即金屬塑性變形量愈大,差排也就愈多。
面缺陷金屬的缺陷有:外表面、晶粒界面(簡稱晶界)及疊差等。
第二章作业2-1 常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?V、Mg、Zn 各属何种结构?答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch 公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15 天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn 的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W 在1000℃时为冷加工,Sn 在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。