金属晶体结构
- 格式:ppt
- 大小:5.48 MB
- 文档页数:46
金属的晶体结构
晶格结构
金属的晶格结构可以分为几种常见类型:
1. 立方晶格:包括面心立方晶格和体心立方晶格两种。
面心立方晶格中,每个原子占据正方形的每个面的中心和每个角的一半位置。
体心立方晶格中,每个原子位于立方体的中心。
2. 六角密排晶格:每个原子占据六边形密集堆积的每个角和每个孔的一半位置。
3. 其他晶格:还有一些金属存在其他的非常规晶格结构,如密排立方和简单立方等。
应用
金属的晶体结构对其性能和性质具有重要影响。
通过改变金属
的晶体结构,可以调节金属的硬度、强度、导电性、热导性等特性。
同时,晶体结构也决定了金属的晶界、位错等缺陷的分布和性质。
在金属加工中,了解金属的晶体结构可以帮助工程师选择合适
的加工方法和工艺参数,以获得所需的金属性能。
结论
金属的晶体结构是金属固体内原子或离子的有序排列方式。
不
同的晶格结构决定了金属的性能和性质。
通过了解金属的晶体结构,可以更好地设计和加工金属材料。
金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。
每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。
典型的例子是铜、铝和金。
2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。
每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。
铁和钨是常见的具有BCC结构的金属。
3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。
这些层之间存在垂直堆叠,形成一个紧密堆积的结构。
典型的例子是钛和锆。
除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。
这些不同的结构对于金属的性质和行为有着重要的影响。
1。
金属的晶体结构1、金属的晶体结构金属在固态下原子呈有序、有规则排列。
晶体有规则的原子排列,主要是由于各原子之间的相互吸引力与排斥力相平衡。
晶体特点:(1)有固定熔点,(2)原子呈规则排列,宏观断口有一定形态且不光滑(3)各向异性,由于晶体在不同方向上原子排列的密度不同,所以晶体在不同方向上的性能也不一样。
三种常见的晶格及分析(1)体心立方晶格:铬,钒,钨,钼,α-Fe。
1/8*8+1=2个原子(2)面心立方晶格:铝,铜,铅,银,γ-Fe。
1/8*8+1/2*6=4个原子(3)密排六方晶格:镁,锌。
6个原子•用以描述原子在晶体中排列的空间格子叫晶格体心立方晶格面心立方晶格密排六方晶格2、金属的结晶结晶的概念:金属材料通常需要经过熔炼和铸造,要经历有液态变成固态的凝固过程。
金属由原子的不规则排列的液体转变为规则排列的固体过程称为结晶。
结晶过程:不断产生晶核和晶核长大的过程冷却曲线:过冷现象:实际上有较快的冷却速度。
过冷度:理论结晶温度与实际结晶温度之差,过冷度。
金属结晶后晶粒大小一般来说,晶粒越细小,材料的强度和硬度越高,塑性韧性越好为了提高金属的力学性能,必须控制金属结晶后晶粒的大小。
细化晶粒的根本途径:控制形核率及长大速度。
细化晶粒的方法:(1)增大过冷度,增加晶核数量(2)加入不熔物质作为人工晶核(3)机械振动、超声波振动和电磁振动金屬晶體缺陷:金屬材料以肉眼觀察其外表似乎是完美的;實際不然,金屬晶體含有許多缺陷,這些缺陷可分類為點缺陷、線缺陷及面缺陷。
這些缺陷對金屬材料的性質有很重要的影響。
點缺陷:金屬最簡單形式的點缺陷就是空孔空孔是最簡單形式的點缺陷,原子在結晶格子位置上消失间隙原子置代原子線缺陷:線缺陷一般通稱為「差排」(dislocation) 。
差排的產生主要與金屬在機機加工時的塑性變形有關;亦即金屬塑性變形量愈大,差排也就愈多。
面缺陷金屬的缺陷有:外表面、晶粒界面(簡稱晶界)及疊差等。