当前位置:文档之家› (整理)实验21微波波导管内电磁场分布测量.

(整理)实验21微波波导管内电磁场分布测量.

(整理)实验21微波波导管内电磁场分布测量.
(整理)实验21微波波导管内电磁场分布测量.

实验2.1 微波波导管内的电磁场分布测量实验

§2.1.1实验目的

通过测量微波波导管内的电磁场分布,了解微波的产生、传播等基本特性,掌握微波测量的基本方法和技术。

§2.1.2实验原理与方法

一、微波与体效应微波振荡器

1、微波

按照国际电工委员会(IEC)的定义,微波(Microwaves)是“波长足够短,以致在发射和接收中能实际应用波导和谐振腔技术的电磁波”。实际应用中,微波通常指频率在300GHz到300MHz、波长范围1毫米到1米的电磁波,可分为分米波、厘米波、毫米波三个波段。

自上世纪40年代以来,微波科学技术表现出巨大的应用价值。例如,

? 雷达的诞生与成熟(1939一1945年);

? 微波波谱学与量子电子学的巨大进步(1944年-至今);

? 射电天文学大发展(1946—1971年);

? 微波能量利用及微波医学(1947年-至今);

? 卫星通信及卫星广播的建立与普及(1964年-至今);

? 遥感、气象监测等;

? 高功率微波武器。1984年美国国防部制定定向能发展计划(定向能包括高能激光、粒子束和高功率微波(HPM)三个方面)。“微波武器” 将在反卫星、反精确制导武器等方面发挥重要作用。

2、体效应微波振荡器

目前,常用的产生微波振荡器的有两大类,电真空器件与固体器件。其中,电真空器件主要包括微波电真空三极管、反射速调管、磁控管和返波管等;固体器件有晶体三极管、体效应二极管(也称耿氏二极管,由于体效应管中微波电流振荡现象是耿式(J.B Gunn)于1963年首先发现的)和雪崩二极管。由于固体器件具有体积小、重量轻、耗电省及便于集成等优点,近几十年来发展迅速,尤其在中小功率范围内它已经取代电真空器件。固体器件中,采用体效应振荡器制成的微波信号源具有噪声低、工作电压低和便于调谐的优点,目前在实验室中广泛采用该类微波信号源。

1)负阻效应

体效应管的工作原理是基于N型砷化镓(GaAs)的导电能谷——高能谷和低能谷结构,如图2.1-1所示,高低能谷间的能量差0.36eV。处于这两类能谷中的电子具有不同的有效质量和不同的迁移率。在常温下低电场时,大部分导电的电子处在电子迁移率高而有效质量较低的低能谷中,当随外加电场增大,许多电子被激发跃迁到高能谷中,在那里电子迁移率低而有效质量较大。因此,低电场时,导电率高,而在高电场时导电率低。这种效应的结果使电子迁移率急剧下降。这种随电场的增加而导致电流下降的现象称为负阻效应,如图2.1-2

所示。

图2.1-1N 型GaAs 的能带结构 图2.1-2 N 型GaAs 电子平均速度与外场关系

2)体效应管的工作原理

在N 型砷化镓半导体材料上施加直流偏压V 0后,电流随电压线性增长,但E>E th 时(E th ,为负阻效应起始电场),由于负阻特性,形成所谓“负电阻效应”。“负电阻效应”形成的原因在于半导体内的载流子(例如电子)速度呈“负迁移率”特性,速度随电场的变化见图2.1-2,即当电场的强度增加到某个数值以后,速度不是随电场增加而是减小。但是,电压在体效应管上的分布并非均匀,在电压的负极端,因半导体与金属电极有接触电阻,加上电子、之间的排斥作用,使该端的等效电阻较大,因此,在电压的负极端首先出现“负电阻效应”。这里的电子速度下降,而前面的电子速度较快,这些电子将把速度慢的电子抛在后面,结果在快电子和慢电子之间出现了电荷的不平衡,该区域呈现正电性,见图2.1-3。正电荷和后面赶上来的电子之间形成一个偶极层(偶极畴),该区域内的电场方向与外加电场方向一致,使电子的速度更慢,所以,偶极畴在向正极移动的同时将不断扩大。但是,由于所加的总电压是一定的,当偶极畴上分担的电压较多时,没有进入“负电阻效应”的区域上的电压将下降,电场减弱,电子速度减小,当该速度等于后面赶上来的电子的速度时,偶极畴不再扩大,以匀速向正极渡越,当到达正极时,偶极畴很快地消失,同时,在负极又形成新的偶极畴,重复上述的过程。我们看到,当负极刚开始进入“负电阻效应”时,体效应管内的电场最强,此时电流最大;在偶极畴以匀速运动时,区外的电场已经减弱,此时的电流由区外的电场决定,该电流显然是下降了。因此,通过体效应管的电流将如图2.1-4所示,呈现周期性振荡,其振荡频率与材料的尺寸(电压正负极间的距离)有关,如果尺寸合适,振荡频率将在微波范围。

图2.1-3 偶极区的出现和运动 图2.1-4 体效应管的脉动电流

通过砷化镓的电流是一连串很狭窄的尖峰波,其周期等于偶极畴的渡越时间。

01S

L T f V == (2.1.1) 式中,0f 为体效应管工作频率(亦称固有频率),L 为晶体的厚度,S V 为电子漂移速度。

体效应管的振荡频率与高场畴的渡越时间有关。只要砷化镓的厚度足够小,体效应管可以产生类似脉冲尖峰的振荡波形,振荡频率就可很高。实际应用中,是将体效应管装在金属谐振腔中做成振荡器,通过改变腔体内的机械调谐装置可在一定范围内改变体效应管振荡器的工作频率。

二、 微波在矩形波导管中的传输

1、矩形波导管中的传输波型

根据Maxwell 方程组以及波导管的边界条件,可以求解出只有TE 波和TM 波这两大类波能够在矩形波导中传播,这里给以简单的证明:

先介绍导行电磁波的场量关系。

假设导行电磁波是沿z 方向传播的单色波,对于规则波导,场矢量对坐标z 和时间t 的依赖关系是)(wt z K j z e -,z K 是沿z 方向的波矢量分量。纵向场分量z E 、z H 具有形式

)

(0)(),(wt z K j s z z z e x E t x E -=

)(0)(),(wt z K j s z z z e x H t x H -= (2.1.2) s x 是与z 轴垂直的横向坐标矢量。将电场E 和磁场H 都分解成纵分量和横分量

z z s e E E E +=

z z s e H H H += (2.1.3) 将算子?,2?也写成纵向、横向分量形式:

z e z

s ??+?=? z

s 222

2??+?=? (2.1.4) 由于导行波场量对z 和t 的依赖关系是)(wt z K j z e -,z

e z ??对场量的作用可以用z z e jK 代替。那么(2.1.4)式中的两个旋度方程可以写成

)()()()

()()(z z s z z s z z s z z s z z s z z s E e E jw H e H e jK H e H jw E e E e jK +-=+?+?+=+?+?εμ (2.1.5)

注意)(s s s H E ??只给出纵向分量,将上面方程分解成纵向分量和横向分量得

s s z z z z s H jw E e jK e E μ=?+?? (2.1.6) s s z z z z s E jw H e jK e H ε-=?+?? (2.1.7)

z z s s e H jw E μ=?? (2.1.8)

z z s s e E jw H ε-=?? (2.1.9)

这里利用了公式z z s z z s e E e E ??=??)(。以?z e 式(2.1.6)得

s z s z z s H e jw E jK E ?=-?μ

由此解出s z H e ?并代入式(2.1.7),得

])([2

z z s z s z s s e H w E K K j E ??+?=μ (2.1.10) 其中222z s K K K -=,s K 是波矢K 的横向分量。同样,可以解出

])([2z z s z s z s

s e E w H K K j H ??-?=ε (2.1.11) 式(2.1.10)和(2.1.11)用导行波电磁场的纵向分量表示出了电磁场的横向分量。

根据导行波场量的关系,按照z E 、z H 取值的不同情况,可以把导行电磁波分为三种基本波型:横电波型;横磁波型;横电磁波型。现证明在规则波导管内第三种波型不存在:

横电磁波型满足0==z z H E ,电磁场完全是横向的。故对于横电磁波型,由式(2.1.10)和(2.1.11)可以看出,除非0=s K ,否则0==s s H E 。而0=s K 意味着K K z =,即波矢只有沿传播方向z 的分量。

关于横电磁波型的电磁场,由式(2.1.6)—(2.1.9),注意到0==z z H E ,K K z =,得

s s z H jw E jKe μ=? (2.1.12) s s z E jw H jKe ε-=? (2.1.13)

0=??s s E (2.1.14) 0=??s s H (2.1.15) 以s ?点乘式(2.1.13)两端,并利用式(2.1.15)得

0=??s s E (2.1.16)

式(2.1.14)和(2.1.16)表明,横电磁波的横电场满足的方程和没有电荷分布区域中的二维静电场相同。同样也可以证明横磁场满足的方程和没有电流分布区域中二维稳恒磁场相同。在理想导体波导管内部,这些方程只能有零解,所以理想波导管不可能传播横电磁波型。故在矩形波导管内只传播横电波型和横磁波型这两种。

2、TE 10波在矩形截面a×b 波导管中的传输

在实际应用中,一般让波导中存在一种波型,而且只传输一种波型。我们实验中用的TE 10波就是矩形波导中常用的一种波型。为了实现单一波型(单模)传输,常把波导尺寸设计成标准化。宽边为a 、窄边为b 的矩形波导,只要满足b=(0.4-0.5)a 的关系,波导管就只传输TE mn 的最低模,即TE 10波。TE 10波具有可单传、带宽、低耗、简单稳定、易于激励、无限长、易于耦合等优点,是一种应用最广泛的波型。设矩形波导管内壁为理想导体且沿Z 轴方向为无限长,矩形波导管中TE 10波的各电磁场分量分别为:

()0()

0()02sin(

)0

sin()cos()0

j wt z y x z j wt z x j wt z z y x E E e a E E x H E e w a

x H j E e w a a

H βββπβπμππμ---===-=== (2.1.17) 它们相对应的电磁场结构及波导壁电流分布如图2.1-5所示。

图2.1-5 TE 10波的电磁场结构

在波导中常用自由空间波长0λ、截止波长C λ、波导波长g λ、相移常数β、反射系数Γ、驻波比ρ等特性参量来描述电磁波在波导中的传输特征,对于矩形波导中的TE10波,它们的表达式为:

0max min 22 2.2.181

1

c g g

c

f

a E E E E λλλπβλρρρ=

=== Γ=

=

-Γ=+反

入() 在实际应用中,传输线不可能是无限长的,所以波导管中的电磁波是由入射波和反射波叠加而成的,其状态决定于负载的情况:

①终端接匹配负载,微波功率全部被负载吸收,无反射波,在波导中呈行波状态。这种情况下,0Γ=,1ρ=。

②终端接一般性负载,即既有电阻又有电抗的负载,这就会形成全反射,波导中的电磁波为混合波状态。这种情况下,01<Γ<,1ρ<<∞。

③终端被短路、开路或接纯电阻抗性负载,形成全反射,波导中为纯驻波。这种情况下,1Γ=,ρ=∞。

行波、混合波和驻波的振幅分布波示意图如图2.1-6所示。

图 2.1-6(a )行波,(b )混合波,(c)驻波

三、 微波参数测量原理与方法

驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。沿狭槽移动探针,就可以测量出沿波导轴线的电磁场分布情况。驻波测量就是采用驻波测量线测量驻波比和波节的位置。在测量驻波比之前需要对检波晶体定标,即求出晶体检波率。

1、检波微波二极管的检波特性曲线及检波率

微波频率很高,通常用检波晶体(微波二极管)将微波信号转换成直流信号来检测的。晶体二极管是一种非线性元件,亦即检波电流I 同场强E 之间不是线性关系,在一定范围内,大致有如下关系

αkE I = (2.1.19)

其中:k,α是和晶体二极管工作状态有关的参量。当微波场强较大时呈现直线律,当微波场强较小时(P

校准方法:将测量线终端短路,这时沿线各点驻波的振幅与到终端的距离l 的关系应当为

g l

k E λπ2sin '= (2.1.20)

上述关系中的l 也可以以任意一个驻波节点为参考点。联立(2.1.19)和(2.1.20)式子,并取对数得到

211sin g l

gI K a g πλ=+ (2.1.21)

作出LgI —1g|si n(2πl /λg )|曲线,若呈现为近似一条直线,则直线的斜率即是检波率α,若不是直线,也可以方便地由检波输出电流的大小来确定电场的相对关系。

2、驻波的测量方法

⑴ 小驻波比(ρ <1.5)

为了提高测量精度,必须尽量使指示器的电表指示到满量程的二分之一以上。当待测电路的驻波比在ρ< 1.5时,驻波的最大值和最小值相差不大,且波节、波腹平坦,难以准确地测定场强。为了提高准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。

在通常实验条件下,检波功率电平较小(检波电流小于微安),可以认为晶体检波特性为平方律,即n=2。若驻波波腹点和节点处读数分别为I max 和I min ,则驻波比ρ为:

max1max 2max min1min 2min n n

E E E E E E ρ++???==++??? (2.1.22)

⑵ 中驻波比(1.5<ρ<5) 此时可以采用直接测量,即只须测一个驻波波腹和一个驻波波节,即可直接测出I max 和I min ,驻波比ρ为:

max min E E ρ== (2.1.23) 直接法测驻波系数是一种最简单、最常用的方法。但这种方法仅适用于驻波系数小于5左右(即中、小驻波系数)的情况。在大驻波比时,最大场强指示与最小场强指示相差悬殊。而低量程时电表读数误差较大。

(3)大驻波比(ρ>5)

当被测器件的驻波系数大于10时,驻波最大电压与最小电压相差很大。在驻波最大点,往往因电压较大而使晶体的检波特性偏离平方律、转入直线律。用直接法测量驻波系数将引入较大的误差。因此,在大驻波系数的条件下,直接法不适用,需要寻求其他测量方法。这里只介绍“二倍极小功率法”来测量大驻波比。

图2.1-7 二倍极小功率法测驻波比

如图2.1-7所示,二倍极小功率法是先测出某极小点的检波电流min I ,此时晶体工作在平方律检波,则只须测出读数为最小点二倍的两点间距离及波导波长,驻波比可近似为:

g d

λρπ≈ (2.1.24) 式中,d 为二倍最小点幅度处,d = X 1-X 2。

必须指出:d 与λg 的测量精度对测量结果的影响很大,因此必须用高精度的探针位置指示装置(如百分表)进行读数。

由上式可以看出,d 与λg 值的测量精度对测驻波系数量结果影响很大。特别是测大驻波系数时,测量d 与λg 必须使用高精度的位置指示装置(如千分测微计等)。

§2.1.3实验设备

实验设备如图2.1-8所示。

图2.1-8 微波测量系统示意图

1—微波信号源 2—隔离器 3—衰减器 4—频率计 5—测量线 6—检波晶体

7—选频放大器 8——喇叭天线 9——匹配负载 10—短路片 11—失配负载

1.波导管:本实验所使用的波导管型号为BJ —100,其内腔尺寸为α=22.86mm ,b =10.16mm 。其主模频率范围为8.20~12.50GHz ,截止频率为6.557GHz 。

2.隔离器:位于磁场中的某些铁氧体材料对于来自不同方向的电磁波有着不同的吸收,经过适当调节,可使其对微波具有单方向传播的特性。隔离器常用于振荡器与负载之间,起隔离和单向传输作用。

3.衰减器:把一片能吸收微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。衰减器起调节系统中微波功率以及去耦合的作用。

4.谐振式频率计(波长表):

电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本上不影响波导中波的传输。当电磁波的频率满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.驻波测量线:驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器。在波导的宽边中央开有一个狭槽,金属探针经狭槽伸入波导中。由于探针与电场平行,电场的变化在探针上感应出的电动势经过晶体检波器变成电流信号输出。

6.晶体检波器:从波导宽壁中点耦合出两宽壁间的感应电压,经微波二极管进行检波,调节其短路活塞位置,可使检波管处于微波的波腹点,以获得最高的检波效率。

7.匹配负载:波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

§2.1.4实验内容及要求

(1) 测量短路负载时波导中的驻波分布情况,计算波导波长,并校准晶体的检波特性。

要求:由测量得到的波导波长换算出微波的自由空间波长,与根据微波信号源频率计算得到的波长值进行比较。并根据短路负载的1gI—1g |sin(2πl/ λg)|曲线求出晶体检波率常数α。

(2) 测量不同负载时波导中的电场强度分布情况,计算相应的驻波比。

要求:算出不同负载时对应的驻波比,并讨论驻波比与负载反射系数之间的关系。

§2.1.5思考题

1.

2.本实验中是如何实现波导管内传输单一波型的?

3.

4.驻波节点的位置在实验中精确测准不容易,如何比较准确的测量?如何比较准确地

测出波导波长。

5.

6.波导波长与波的哪一种速度相关?解释为什么波导波长比自由空间波长要长?

§2.1.6 实验设计与拓展

查阅相关资料,拓展以下实验内容:

1.测量某材料的微波反射率R-频率f的曲线。

2.观察微波辐射的几种典型现象。要求描述观察到的微波辐射典型现象,并做出适当

的解释。

主要参考文献:

1、

2、晏于模,王魁香.近代物理实验.吉林大学出版社,1994.1

3、戴道宣,戴乐山.近代物理实验(第二版).北京:高等教育出版社,2006.7

4、

5、吴思诚,王祖铨. 近代物理实验(第三版).北京:高等教育出版社,2005.11

6、

7、高立模. 近代物理实验. 天津:南开大学出版社,2006.9

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮电磁场与微波测量实验实验七无线信号场强特性

电磁场与微波测量实验报告 学院:电子工程学院 班级:2011211204 执笔人: 学号:2011210986 组员:

实验目的 1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法; 2. 研究校园内各种不同环境下阴影衰落的分布规律; 3. 掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念; 4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系; 5. 研究建筑物穿透损耗与建筑材料的关系。 实验原理 1. 电磁波的传播方式 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等 于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。 电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。当电磁波传播遇到比波长大 很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当 电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。 2. 尺度路径损耗 在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗: 用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间 的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功 率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗 表示为: PL d dB PL dO 10nlog d/d0 即平均接收功率为: Pr d dBm Pt dBm PL dO 10nlog d/dO Pr dO dBm 10nlog d /dO 其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,dO为近地参考距离, d为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率1OndB /1O倍程的 直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。 决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值 (对于正态分布中值就是均值)。 人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的 描述大尺度衰落的模型。常用的电波传播模型:

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

电磁场和微波技术znjn

——电磁场与微波技术实验报告 班级:06 姓名:张妮竞男 学号:84 序号:31# 日期:2014年5月31日 邮箱: 实验二:分支线匹配器 一、实验目的 1、掌握支节匹配器的工作原理 2、掌握微带线的基本概念和元件模型 3、掌握微带分支线匹配器的设计与仿真 二、实验原理 1、支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2、微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 微带线元件模型 3、元器件库里包括有: MLIN:标准微带线 MLEF:终端开路微带线 MLSC:终端短路微带线 MSUB:微带线衬底材料 MSTEP:宽度阶梯变换 MTEE:T型接头 MBENDA:折弯 微带线的不均匀性 上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。一般的微带电路元件都包含着一些不均匀性,例如微带滤波器中的终端开路线;微带变阻器的不同特性阻抗微带段的连接处,即微带线宽度的尺寸跳变;微带分支线电桥、功分器等则包含一些分支T型接头;在一块微带电路板上,为使结构紧凑及适应走线方向的要求,时常必须使微带弯折。由此可见,不均匀性在微带电路中是必不可少的。由于微带电路是分布参数电路,其尺寸已可与工作波长相比拟,因此其不均匀性必然对电路产生影响。从等效电路来看,它相当于并联或串联一些电抗元件,或是使参考面发生一些变化。在设计微带电路时,必须考虑到不均匀性所引起的影响,将其等效参量计入电路参量,否则将引起大的误差。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电磁场与微波实验指导书实验一

电磁场与微波实验指导 书实验一 Revised as of 23 November 2020

实验一微波基础计算器与MWO软件熟悉 一、实验目的 1.掌握传输线(长线)基本理论; 2.熟练掌握Smith圆图的工作原理; 3.熟练使用微波技术基础计算器计算单枝节线匹配。 4.熟悉MWO软件界面和基本操作。 二、实验原理 微波技术基础计算器是以微波计算为基础的进行专业计算的工具。实现了微波技术基础理论中长线(传输线)理论、Smith圆图、网络理论等部分的计算。此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith圆图的绘制;任意长线和负载的单枝节匹配;双口网络S、Z、Y、A参数的相互转换。 1、长线理论 基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么) 电压波与电流波(入射与反射)关系: 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数和特性阻抗。传输线理论三套参量:输入阻抗in,反射系数,驻波参量(驻波系数和最小距离l min) 三套参量间的换算关系: 三套参量同时一个单位圆内表示

1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面; 2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动 3)驻波系数在反射系数复平面上也是同心圆, 4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。 2、并联单枝节传输线匹配 1) 终端短路传输线相当于一个纯电抗 2) 在主传输线上并联一个短路面位置可调的支路传输线,相当并联一个可变电抗。 3) 由于并联枝节,进行匹配设计时用导纳方法表示更为方便。 三、 微波基础计算器的使用 有了这些基本概念之后,我们就可以学习微波计算器的使用方法。这个计算器实际上就是利用以上的公式,编成、作图完成的,国内外也还有很多类似的软件。微波计算器的主界面如图1所示。 图1 微波计算器主界面 选择图1中所示的“长线”工具。出现如图2所示的窗口。 开路 匹配

电磁场与微波测量实验报告(三)

电磁场与微波测量实验报告(三) 学院: 班级: 组员一: 学号: 组员二: 学号:

实验一:微波测量系统的使用和信号源波长功率的测量 一,实验目的 (1)学习微波的基本知识; (2)了解微波在波导中传播的特点,掌握微波基本测量技术; (3)学习用微波作为观测手段来研究物理现象。 二,实验原理 本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。该系统由以下几个部分组成: 检波指示器 1,波导测量线装置 2,晶体检波器 微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流来读数的。 3,波导管 本实验所使用的波导管型号为BJ-100。 4,隔离器 位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。 5,衰减器

把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量 的大小。衰减器起调节系统中微波功率从以及去耦合的作用。 6,谐振式频率计(波长表) 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。 当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的 阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输 出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度, 通过查表可得知输入微波谐振频率。 7,匹配负载 波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 8,环形器 它是使微波能量按一定顺序传输的铁氧体器件。主要结构为波导Y 型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外 面有“U”形永磁铁,它提供恒定磁场H0。 9,单螺调配器 插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到 匹配状态。调匹配过程的实质,就是使调配器产生一个反射波,其幅度 和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系 统中引起的反射而达到匹配。 10,微波源 提供所需微波信号,频率围在8.6-9.6GHz可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 11,选频放大器 用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检 测。 三,实验容和实验步骤

电磁场与微波技术专业(080904)研究生培养方案

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究;

北邮电磁场与微波实验报告

信息与通信工程学院电磁场与微波实验报告 实验题目:微波器件设计与仿真 班级: 姓名: 学号: 日期:2016.5.18

实验二分支线匹配器 一、实验目的 1.掌握支节匹配器的工作原理 2.掌握微带线的基本概念和元件模型 3.掌握微带分支线匹配器的设计与仿真 二、实验原理 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2. 微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 三、实验内容 已知:输入阻抗 Zin=75Ω 负载阻抗 Zl=(64+j75)Ω 特性阻抗 Z0=75Ω 介质基片面性εr=2.55 ,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离 d1=λ/4,两分支线之间的距离为d2=λ/8。画出几种可能的电路图并且比较输入端反射系数幅值从 1.8GHz至2.2GHz的变化。 四、实验步骤

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

北邮电磁场与微波实验天线部分实验报告二

. . . . 信息与通信工程学院 电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz: 四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名:

实验一:验证电磁波的反射和折射定律(1学时) 1、实验目的 验证电磁波在媒质中传播遵循反射定理及折射定律。 (1)研究电磁波在良好导体表面上的全反射。 (2)研究电磁波在良好介质表面上的反射和折射。 (3)研究电磁波全反射和全折射的条件。 2、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 3、实验结果: 入射角25°30°35°40°45°50°55°60° 折射角149 143 135 131 133 128 124 118 图1.1 电磁波在介质板上的折射 入射角25°30°35°40°45°50°55°60° 反射角32°34°36°44°47°52°37°61° 图1.2 电磁波在良导体板上的反射

实验二:电磁波的单缝衍射实验、双缝干涉实验。 1、实验目的 (1)研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度不是均匀的,中央最强; (2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。 2、实验原理 单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为 ,其中n波长,n狭缝宽度。两者取同一长度单位,然后,随着衍射角增大, 衍射波强度又逐渐增大,直至一级极大值,角度为: 图 5 单缝衍射实验原理图 如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。当然电磁波通过每个缝也有狭缝现象。因此实验将是衍射和干涉两者结合的结果。为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如: ,这时单缝的一级极小接近53°。因此取较大的b,则干涉强受 单缝衍射影响大。干涉加强的角度为:干涉减弱的角度 为:

电磁场与微波测量实验报告(一)

电磁场与微波测量实验报告(一) 学院:电子工程学院 班级:2015211205 组员一:李聪 学号:2015210926 组员二:陈孟 学号:2015210925

实验一:电磁波反射和折射实验 一,实验目的 1、熟悉S426型分光仪的使用方法。 2、掌握分光仪验证电磁波反射定律的方法。 3、掌握分光仪验证电磁波折射定律的方法。 二,实验设备与仪器 S426型分光仪 三,实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的 金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵 循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 验证均匀平面波在无耗媒质中的传播特性;均匀平面波垂直入射理想电 解质表面的传播特性。 四,实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 如下页图1所示,仪器连接时,两喇叭口面应互相正对,他们各自的轴线应在一条直线上。指示两喇叭的位置的指针分别指 于工作平台的90刻度处,将支座放在工作平台上,并利用平台 上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四 个压紧螺钉旋转一个角度放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座线面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台 上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相 应90刻度的一对刻线一致。这时小平台上的0刻度就与金属板 的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度的读数就是入射角,然后转动活动臂在电流表上找到最大指示处,此时 活动臂的指针所指的刻度就是反射角。如果此时表头指示太呆或 太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接 近满量程。 4、注意: 做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。注意系统的调整和周围环境 的影响。 图1:反射实验仪器的布置 五,实验数据与处理 1,金属板实验: 实验数据及处理如下表

相关主题
文本预览
相关文档 最新文档