材料研究方法--知识总结
- 格式:pptx
- 大小:3.10 MB
- 文档页数:77
材料研究方法复习1.X射线的本质是什么?是谁首先发现了X射线,谁揭示了X射线的本质?本质是一种波长很短的电磁波,其波长介于0.01-1000Ao 1895年由德国物理学家伦琴首先发现了X射线,1912年由德国物理学家laue揭示了X射线本质。
2.试计算波长0.071nm (Mo-Ka)和0.154A (Cu-Ka)的X 射线束,其频率和每个量子的能量?E=h v =hc/ 入3.试述连续X射线谱与特征X射线谱产生的机理连续X射线谱:从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。
特征X射线谱:从阴极发出的曳土在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。
4.连续X射线谱强度随管电压、管电流和阳极材料原子序数的变化规律?发生管中的总光子数(即连续X射线的强度)与:1阳极原子数Z成正比;2与灯丝电流i成正比;3与电压V二次方成正比:I正比于iZV2可见,连续X射线的总能量随管电流、阳极靶原子序数和管电压的增加而增5.Ka线和KB线相比,谁的波长短?谁的强度高?KB线比Ka线的波长短,强度弱6.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片?实验中选择X射线管要避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。
必须根据所滋'J样品的化学成分选用不同靶材的X射线管。
其选择原则是:Z靶WZ样品+1应当避免使用比样品中的主元素的原子序数大2 — 6 (尤其是2)的材料作靶材。
滤波片材料选择规律是:Z靶V 40时:Z滤=乙靶一1Z靶>40时:乙滤=Z靶一2例如:铁为主的样品,选用Co或Fe靶,不选用Ni或Cu靶;对应滤波片选择Mn7・X射线与物质的如何相互作用的,产生那些物理现象?X射线与物质的作用是通过X射线光子与物质的电子相互碰撞而实现的。
材料研究⽅法复习笔记材料研究⽅法复习笔记第⼀章红外光谱(IR) Infra-red spectroscopy (见课本P261)(分⼦振动和转动能级的跃迁)1. 红外区是电磁总谱中的⼀部分,波长在0.7-1000µm 之间,红外区⼜可分为三个区域:(1)近红外区:0.75-2.5µm(2)中红外区:2.5 -25µm ,分⼦的基频振动(3)远红外区:25-1000 µm ,分⼦转动及晶体的晶格振动2.为什么红外光谱称为振转光谱?当分⼦经光照射吸收后,运动状态将从基态跃迁到⾼能量的激发态。
由于粒⼦运动的能量是量⼦化的,它不能占有任意能量,被分⼦吸收的光⼦,其能量必须等于分⼦动能的两个能级之差,否则不能被吸收。
λc h hv E == 分⼦吸收光⼦能量后,根据能量⼤⼩可引起转动、振动和电⼦能阶的跃迁等。
红外光谱就是由于分⼦的振动和转动引起的,故称为振-转光谱。
3.红外光谱产⽣的条件产⽣红外吸收满⾜两个条件:(1) 辐射应具有能满⾜物质产⽣振动跃迁所需的能量;(2) 辐射与物质间有相互偶合作⽤。
对称分⼦:没有偶极矩,辐射不能引起共振,⽆红外活性。
如:N2、O2、Cl2 等。
⾮对称分⼦:有偶极矩,红外活性。
红外吸收谱带的强度与分⼦数有关,但也与分⼦振动时偶极矩变化率有关,变化率越⼤,吸收强度也越⼤,因此极性基团如羰基、胺基等。
4.若以波数的形式来表⽰双原⼦分⼦的振动频率,则:µπK c v 21=-K 为化学键的⼒常数,与键能和键长有关,µ为双原⼦的折合质量,µ =m 1m 2/(m 1+m 2)发⽣振动能级跃迁需要能量的⼤⼩取决于键两端原⼦的折合质量和键的⼒常数,即取决于分⼦的结构特征。
化学键键强越强(即键的⼒常数K 越⼤),原⼦折合的质量越⼩,化学键的振动频率越⼤,吸收峰将出现在⾼波数区。
5.基团特征频率在⾮极性溶剂中,浓度较⼩(稀溶液)时,峰形尖锐,强吸收;当浓度较⼤时,发⽣缔合作⽤,峰形较宽。
一、X 射线谱(连续和特征)X 射线与物质相互作用 1、吸收限及其应用定义:吸收系数发生突变的波长激发K 系荧光辐射,光子的能量至少等于激出一个K 层电子所作的功W k h νk = Wk= hc/λk 只有 ν > νk 才能产生光电效应。
所以: λk 从激发荧光辐射角度称为激发限。
从吸收角度看称为吸收限。
吸收限λk 的应用 (1)滤波片的选择 主要目的去除k β原理:选择滤波片物质的λk 介于λ k α 和λk β之间。
即Z 滤=Z 靶-1(Z 靶<40)Z 滤=Z 靶-2 (Z 靶>40) (2)阳极靶的选择 (1) Z 靶< Z 试样(2) 自动滤波 Z 靶= Z 试样+1 或 +2 (3) Z 靶>> Z 试样最忌Z 靶+1或+2=Z 试样 2、X 射线与物质相互作用产生那些信息。
X 射线通过物质,一部分被散射,一部分被吸收,一部分透射。
3、衰减公式I=I 0e-μm ρH1、衰减公式 相对衰减:μ:线衰减系数负号厚度↑ I ↓积分:为穿透系数2、衰减系数 1) 线衰减系数 I :单位时间通过单位面积的能量μ的物理意义:通过单位体积的相对衰减。
2) 质量衰减系数X 射线的衰减与物质的密度有关,因此每克物质引起的相对衰减为 μ/ρ= μm H H m e I I ρμ-=03) 复杂物质的衰减系数 w :重量百分比μm = w 1μm1+ w 2 μm2 + w 3 μm3 +….+ w n μmn 4) μm 与λ、Z 的关系μm ≈k λ3Z 3 λ<λk 时k=0.007λ>λk 时 k=0.009二、晶体学内容 7种晶系、倒易点阵。
晶系 点阵常数间的关系和特点 实例 三斜 单斜 斜方(正交) 正方 立方 六方 菱方a ≠b ≠c,α≠β≠γ≠90° a ≠b ≠c,α=β=90°≠γ(第一种) α=γ=90°≠β二种 a ≠b ≠c,α=β=γ=90°a=b ≠c α=β=γ=90° a=b=c α=β=γ=90° a=b ≠c α=β=90γ=120 a=b=c α=β=γ≠ 90°K2CrO7 β-S CaSO 42H 2O Fe 3C TiO 2 NaCl Ni-As Sb,Bi倒易点阵的定义若正点阵的基矢为a 、b 、c 。
材料研究方法重点1、光学显微分析技术:1.1 光率体:什么是光率体?光率体的用途。
定义:为了反映光波在晶体中传播时,其偏振方向与折射率值之间的关系,所建立的抽象立体几何图像的光性指示体。
其做法是设想自晶体中心起,沿光波的各个振动方向,按比例截取相应的折射率值,在把各个线段的端点联系起来。
实际上光率体是利用晶体各个不同方向上的切片,在折光仪上测出各个光波振动方向上的相应折射率值所作的立体图。
应用:反应了晶体光学性质的最本质特点,形状简单,应用方便,是一切光学现象的基础。
偏光显微镜鉴别晶体矿物都是以光率体在矿物中的方位为依据的。
1.2 光性方位:p19。
光学方位是什么,有什么作用?各中晶体的光学方位特点?1.光率体的主轴与晶体的晶面、结晶轴以及晶楞之间的关系称之为光性方位。
作用:不同的晶体的光性方位不同,而同一晶体的光性方位基本固定,故确定光性方位可以鉴定晶体的类型。
2.三方、四方和六方晶系(中级晶轴)晶体的光率均属于一轴光率体。
其光率体为旋转椭球体,其旋转轴(光轴)与结晶轴(c轴)相当,也与晶系的高次对称轴重合,光率体的中心与晶体中心重合。
3.二轴晶光率体为三轴椭球体,具有三个相互垂直的二次对称轴(主轴),三个对称面(主轴面)和一个对称中心。
其对称要素3L23PC与斜方晶系的最高对称性相当。
故,斜方晶系的光性方位特点是:光率体的三根主轴与晶体的三根结晶轴重合,但至于哪一根主轴与那一根结晶轴重合,因晶体不同而不同。
光率体的三个主轴面与晶体的三个对称面重合。
4.单斜晶系的光性方位与斜方晶系不同,单斜晶系的最高对称型为L2PC.其光性方位的特点是:光率体主轴之一与晶体的二次对称轴重合,光率体的三个主轴面之一与晶体的对称面重合,光率体的另外两个主轴与晶体的另外两个晶轴斜交(即相交一定角度)。
5.三斜晶系晶体中,仅有一个对称中心c可与光率体的对称中心c重合,其晶体的光学方位特点:光率体的三个主轴与晶体的三根结晶轴斜交,其斜交角度因矿物不同而不同。
热分析部分一、热重原理Thermogravimetry,解: TG——在温度程序控制下,测量物质质量与温度之间的关系的技术。
具体:热重的测量形势有两种热天平和弹簧秤。
热天平的测试原理:如果试样无质量变化,则天平保持初始平衡状态,若质量改变,天平就失去平衡;由传感器检测输出天平失衡信号,信号经测重系统放大并调节电流使天平恢复原始平衡的零位。
通过记录这种电流的变化能得到试样质量变化信息。
温度同时由热电偶测定并记录,于是得到温度与质量的关系。
弹簧秤的测试原理:利用弹簧的伸张与重量成比例的关系。
二、差热分析法原理(Differential Thermal Analysis)解: DTA——在程序控制温度下测定物质和参比物之间的温度差和温度关系的一种技术。
1、把被测试样和一种中性物(参比物)置放在同样的热条件下,进行加热或冷却;2、在这个过程中,试样在某一特定温度下会发生物理化学反应引起热效应变化:即试样侧的温度在某一区间会变化,不跟随程序温度升高,而是有时高于或低于程序温度,而参比物一侧在整个加热过程中始终不发生热效应,它的温度一直跟随程序温度升高;3、两者之间就出现一个温度差,然后利用某种方法把这温差记录下来,就得到了差热曲线,再针对这曲线进行分析研究。
三、DTA与DSC的差别(DSC差示扫描量热法Differential Scanning Calorimeter)1、测试原理不同DTA——在程序控制温度下测定物质和参比物之间的温度差和温度关系的一种技术。
DSC——在程序控制温度下,测量输入到试样和参比样的能量差随温度或时间变化的一种技术2、曲线的异同DTA曲线:纵坐标代表温度差ΔT,吸热过程显示向下的峰,放热过程显示向上的峰;横坐标代表时间(t)或温度(T),从左到右表示增加。
DSC曲线:以样品吸热或放热的速率,即热流量dH/dt(单位mJ/s)为纵坐标,以时间t或温度T为横坐标所得到的曲线。
峰向上表示吸热,峰向下表示放热。
材料研究方法(王培铭,许乾慰)第二章光学显微分析2什么是贝克线?此移动规律如何?有什么作用?贝克线:在轮廓附近可以看到一条比较明亮的细线,当升降镜筒时,亮线发生移动,这条较亮的细线称为贝克线。
提升镜筒,贝克线向折射率大的介质移动。
可以比较相邻两晶体折射率的相对大小3什么是晶体的糙面、突起、闪突起?决定晶体糙面和突起等级的因素是什么?在但偏光镜下观察晶体表面时,可发现某些晶体表面较为光滑,某些晶体表面显得粗糙呈麻点状,这种现象称为糙面;某些晶体显得高些某些晶体显得低平一些,这种现象称为突起;双折射率很大的晶体,在单偏光镜下,旋转物台,突起高低发生明显变化,这种现象称为闪突起因素是周围树胶折射率的不同引起的4什么叫干涉色?影响晶体干涉色的因素有那些?有七种单色光的明暗条纹相互叠加而形成的光程差相对应的特殊混合色,称为干涉色,他是有白光干涉而成。
第一是光程差第二是光片厚度第三是双折射率的大小11 如何提高光学显微镜分析的分辨能力?第一:波长更短的照明光源第二:选用折射率大的材料12 阐述光学显微分析用光片制备方法1 取样:取样应该具有代表性,不仅包括研究的对象而且包括研究的特殊条件2 镶嵌:对于一些形状特殊或尺寸细小而不宜握持的样品,需进行样品镶嵌。
3磨光:去除取样时引入的样品表层损伤,获得平整光滑的样品表面4抛光:去除细磨痕,以获得平滑无疵的镜面并去除样品表层,得以观察样品的显微组织 5浸蚀:清晰的看到样品的显微结构13分析近场光学显微分析的原理及与传统光学显微分析技术的异同原理:用纳米局域光源在纳米尺度的近场距离内照明样品,然后由光电接收器接受这些信号,再借助计算机才能把来自样品各点的局域光信号勾画出样品的图像。
异同:照明光源的尺度和照明方法:传统光学显微镜用扩展光源在远场照明样品,近场光学显微镜是用纳米局域光源在纳米尺度的近场距离内照明样品;成像方法:传统光学显微镜可以用肉眼或成像仪器直接观察或放大了的物体图像。
绪论1、材料研究方法中,研究物相组成的主要有哪些方法?研究结构特征主要有那些方法?物相组成分析:非图像分析-成分谱分析(色谱分析;热普分析;能谱分析;光谱分析);衍射法(X射线衍射法;电子衍射法;中子衍射法)结构特征分析:图像分析法-显微术(光学显微术;透射电子显微术;场离子显微术;扫描电子显微术;扫描隧道显微术)X射线衍射1、试述X射线的定义、性质,X射线的产生、特点?定义:X射线是一种波长为0.01纳米到10纳米之间的电磁波。
性质:具有波粒二象性。
波动性:以一定的频率和波长在空间传播;粒子性:由大量的不连续粒子流(光子)构成,每个光子具能量。
产生:高速运动的电子与物体碰撞时,发生能量转换,电子运动受阻失去动能,小部分-X射线,大部分-热能。
特点:1)穿透力强。
2)能使底片感光。
3)能使荧光物质发光。
4)能使气体电离。
5)对生物细胞有杀伤作用。
2、X射线定性相分析的目的和原理是什么?步骤是什么?目的:判定物质中的物相组成。
原理:1)每种结晶物质具有特定的衍射花样。
2)多相试样的衍射花样是由所含各物相的衍射花样机械叠加。
基本步骤:1)通过用粉末衍射法或粉末照相法等获取被测试物质的衍射图像。
2)计算或查找出衍射图谱上每根峰的d值与I值。
3)利用I值最大的三根强线的对应d 值查找索引,找出基本符合的物相名称及卡片号。
4)将实测的d、I值与卡片上的数据一一对照,若基本符合,就可定为该物相。
3、X射线谱——X射线随波长而变化的关系曲线。
4、连续X射线——波长连续变化的X射线。
5、标识X射线——具有特定波长的X射线。
透射电镜和扫描电镜1、分辨本领——显微镜能分辨的样品上两点间的最小距离。
2、景深——透镜对高低不平的试样各部位能同时聚焦成像的一个能力范围。
3、二次电子——被入射电子轰击出来的样品核外电子。
4、背散射电子——被固体样品中院子反射回来的一部分入射电子。
5、衍射衬度——晶体中各部分因满足衍射条件的程度不同而引起的衬度。
XRD1、连续X射线谱与特征X射线谱产生的机理连续X射线谱: 从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。
特征X射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。
书上答:原子系统中的电子遵从刨利不相容原理不连续的分布在K、L、M、N等,不同能级的壳层上,而且按能量最低原理从里到外逐层填充。
当外来的高速度的粒子动能足够大时,可以将壳层中某个电子击出去,于是在原来的位置出现空位,原子系统的能量升高,处于激发态,这时原子系统就要向低能态转化,即向低能级上的空位跃迁,在跃迁时会有一能量产生,这一能量以光子的形式辐射出来,即特征X射线2、 X射线谱的种类?各自的特征?两种类型:连续X射线谱和特征X射线谱连续X射线谱:具有从某一个最短波长(短波极限)开始的连续的各种波长的X射线。
它的强度随管电压V、管电流i和阳极材料原子序数Z的变化而变化。
指X射线管中发出的一部分包含各种波长的光的光谱。
从管中释放的电子与阳极碰撞的时间和条件各不相同,绝大多数电子要经历多次碰撞,产生能量各不相同的辐射,因此出现连续X射线谱特征X射线谱:也称标识X射线谱,它是由若干特定波长而强度很大的谱线构成的,这种谱线只有当管电压超过一定数值Vk(激发电压)时才能产生,而这种谱线的波长与X射线管的管电压、管电流等工作条件无关,只取决于阳极材料,不同元属制成的阳极将发出不同波长的谱线,并称为特征X射线谱3、 X射线相干散射与非相干散射现象相干散射:当X射线与原子中束缚较紧的内层电子相撞时,电子振动时向四周发射电磁波的散射过程。
(这些散射波之间复合振动方向相同、频率相同、位相差恒定的光的干涉条件,所以可以发生干涉作用)非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞时的散射过程。
1.根据IUPAC定义,多孔材料是如何分类的?多孔材料分为微孔材料、介孔材料、大孔材料。
2.N2吸附-脱附理论中,有哪些计算比表面积和孔径的理论模型,都是基于怎样的假设? Langmuir吸附,单分子层吸附,物理吸附;BJH,HK,BdB,DH,DA,SF,NLDFT等方法3.材料的哪些物理参数可通过N2吸附-脱附测试获得?孔径、孔容、比表面积、孔径分布等参数4.XRD测试过程中需主要调整哪些参数以获取准确的测试结果?狭缝宽度、扫描速度、时间常数、加速电压与电流5.XRD主要测试材料的哪些参数?物相-晶体结构、晶体参数-晶胞参数、结晶度-纯度与含量、晶粒取向、纳米晶粒大小6.XRD测试方法有何特点?X射线物相分析特点:①鉴定可靠,因d值精确、稳定;②直接鉴定出物相,并确定物相的化合形式;③需要样品少,不受晶粒大小的限制;④晶体结构相同、晶胞参数相近的物相,有相似的衍射花样;⑤不能直接测出化学成分、元素含量;⑥对混合物相中含量较少的相,有一定的检测误差。
X衍射分析法特点:⑴非破坏性和大面积上的均匀性;⑵对结构和缺陷的灵敏性;⑶对成分、组成、结构和缺陷等参量单一对应性和可定量测量性;⑷制样简单且代表实际使用材料的真实性。
7.电子束和固体样品作用时会产生哪些信号?扫描电子显微镜(SEM)主要用哪两种信号来成像?电子束和固体样品作用时会产生的信号有:二次电子、背散射电子、特征X射线、俄歇电子、吸收电子、透射电子;主要用二次电子和背散射电子来成像。
8.扫描电子显微镜分析样品主要有哪些特点?①制样简单;②景深大,适用于粗糙表面和断口的分析观察,图像富有立体感、真实感,易于识别和解释;③放大倍数变化范围大,可15~80万倍;④具有相当的分辨率,一般为1~3nm;⑤可进行多功能分析(如与X射线能谱仪配接,可在观察形貌的同时进行微区成分分析);⑥可使用加热、冷却和拉伸等样品台进行动态试验,观察各种条件下的相变及形态变化等;⑦可通过电子学方法方便地控制和改善图像的质量。