一、氧传感器简介
- 格式:doc
- 大小:175.50 KB
- 文档页数:10
氧传感器工作原理氧传感器是一种用于测量氧气浓度的设备,它在汽车、工业生产和环境监测等领域有着广泛的应用。
那么,氧传感器是如何工作的呢?接下来,我们将详细介绍氧传感器的工作原理。
首先,让我们来了解一下氧传感器的结构。
氧传感器通常由氧离子传导固体电解质、参比气室、工作电极和参比电极等部分组成。
其中,氧离子传导固体电解质是氧传感器的核心部件,它能够传递氧离子,并且只允许氧离子通过,而阻止其他气体的渗透。
工作电极和参比电极则是用来测量氧气浓度的关键部件。
当氧传感器工作时,参比气室和环境中的氧气通过氧离子传导固体电解质,进入到工作电极和参比电极之间的空间。
在这个空间中,氧气会与工作电极上的铂电极发生化学反应,产生电流。
而参比电极则用来补偿温度和压力的影响,以确保测量结果的准确性。
通过测量工作电极和参比电极之间的电流,氧传感器就能够准确地测量出环境中的氧气浓度。
当氧气浓度增加时,工作电极和参比电极之间的电流也会相应增加,反之则会减少。
这样,氧传感器就能够实时地监测环境中的氧气浓度,并将测量结果传输给控制系统,以便进行调节和控制。
除了测量环境中的氧气浓度外,氧传感器在汽车尾气处理系统中也有着重要的作用。
在汽车尾气处理系统中,氧传感器可以监测排放气体中的氧气浓度,并根据测量结果来调节发动机的燃烧效率,从而降低排放物的排放量,保护环境。
总的来说,氧传感器是一种能够准确测量环境中氧气浓度的设备,它通过氧离子传导固体电解质、工作电极和参比电极等部件的协同作用,实现了对氧气浓度的高精度监测。
在汽车、工业生产和环境监测等领域,氧传感器都发挥着重要的作用,为保护环境和提高生产效率发挥着重要的作用。
通过以上的介绍,我们相信大家对氧传感器的工作原理有了更深入的了解。
希望本文对大家有所帮助,谢谢阅读!。
汽车氧传感器工作原理
汽车氧传感器工作原理是通过测量引擎排气中的氧气含量来判断燃烧的效果以及排放物的浓度,从而实现对引擎的燃烧控制和排放控制。
汽车氧传感器通常由两个电极组成,它们与环境中的氧气接触。
其中,一个电极是参考电极,负责与环境中的氧气达到平衡;而另一个电极则是测量电极,负责测量排气中的氧气含量。
当引擎正常运行时,测量电极所在的区域因为存在可燃物质(如燃油、一氧化碳等)而缺氧,因此测量电极产生的电流较小。
而参考电极周围则存在氧气,因此产生的电流较大。
这样,在两个电极之间形成了电势差。
汽车氧传感器中引入了一个陶瓷层,用于分离两个电极,并且只允许在一侧通过氧气。
随着氧气的透过,电流通过参考电极和测量电极之间的分割氧离子传导,形成了电势差。
这个电势差在传感器的电路中被转换为电压信号。
当氧气含量较高时,如过量空气燃烧状态,则传感器输出的电压较高;反之,当氧气含量较低时,如燃油丰富燃烧状态,则传感器输出的电压较低。
这样,车辆控制系统就可以根据氧传感器输出的电压信号来判断引擎燃烧的效果,并进行相应的调整。
总之,汽车氧传感器通过测量排气中的氧气含量来实现对引擎燃烧和排放的控制。
运用电势差原理,通过测量电极和参考电
极间的电流差异,将其转化为电压信号。
根据该信号,车辆控制系统能够调整燃烧状态,以达到优化燃烧效果及排放物浓度的目的。
大陆氮氧传感器pid算法大陆氮氧传感器PID算法的工作原理和应用引言:随着汽车工业的快速发展,对尾气排放的控制要求也越来越高。
氮氧化物(NOx)是主要的尾气污染物之一,对人类健康和环境造成极大的威胁。
为了降低NOx的排放,氮氧传感器被广泛应用于汽车尾气处理系统中。
而PID控制算法作为一种经典的控制方法在氮氧传感器的控制中具有重要的地位。
本文将详细介绍大陆氮氧传感器PID算法的工作原理和应用。
一、氮氧传感器简介氮氧传感器是一种可测量和控制尾气中NOx含量的装置。
它通常由氧传感器和氮气传感器组成,通过测量尾气中的氮氧化物浓度以及氧气含量来反馈实时数据给汽车的控制单元。
二、PID控制算法原理PID控制算法是一种经典的控制方法,由比例、积分和微分三个控制输出组合而成,可以根据系统的反馈信息来调整控制器的输出,使得被控制量接近期望值。
1. 比例控制(P)比例控制根据被控制量与设定值之间的差异来调整输出。
通过一个比例系数Kp将差异放大,并与输出相乘,产生比例控制的作用。
具体来说,在氮氧传感器控制中,比例控制可以根据测量到的NOx浓度和目标浓度之间的差距来调整传感器的输出。
2. 积分控制(I)积分控制根据被控制量与设定值之间的积分累积来调整输出。
通过一个积分系数Ki将积分累积放大,并与输出相乘,产生积分控制的作用。
在氮氧传感器控制中,积分控制可以用来消除系统的稳态误差,即在长时间内使测量值与目标值精确匹配。
3. 微分控制(D)微分控制根据被控制量变化的速率来调整输出。
通过一个微分系数Kd将变化率放大,并与输出相乘,产生微分控制的作用。
在氮氧传感器控制中,微分控制可以用来降低系统的超调量,即使被控制量的变化更加平滑。
综合利用比例、积分和微分控制,PID算法可以根据系统反馈信息实时调整控制输出,以快速响应和精确控制氮氧传感器中的氮氧化物浓度。
三、大陆氮氧传感器PID算法应用大陆是一家全球知名的汽车零部件供应商,其氮氧传感器PID算法应用广泛且成熟可靠。
宽域氧传感器工作原理宽域氧传感器,又称氧气传感器,是一种用于测量发动机尾气中氧气含量的传感器。
它的工作原理是通过测量尾气中氧气的含量来帮助发动机控制系统调整燃料混合物的比例,从而实现更高效的燃烧过程,减少尾气排放和提高燃油利用率。
宽域氧传感器通常安装在发动机排气系统的进气歧管或者排气歧管上。
它的外部结构一般由金属外壳、陶瓷体、氧离子传导层、电极和保护层组成。
当发动机运转时,尾气通过传感器,氧气分子在传感器的工作电极上与氧离子发生反应,产生电压信号。
这个信号会被发动机控制单元(ECU)接收并分析,然后根据分析结果调整燃油喷射量,以保持理想的空燃比。
在传感器的工作过程中,需要注意以下几个方面的工作原理:1. 氧气浓度测量原理,宽域氧传感器通过氧离子传导体的材料来测量尾气中氧气的浓度。
当氧气浓度高时,传感器输出的电压信号也会相应变高,反之亦然。
这样的特性使得发动机控制系统能够根据实时的氧气浓度信息来调整燃油喷射量,保持理想的空燃比。
2. 传感器加热原理,宽域氧传感器需要在较高的温度下才能正常工作,因此传感器内部会有一个加热元件,通常是一根加热丝。
当发动机启动时,ECU会向传感器发送加热信号,使得加热丝加热,从而加速传感器的工作温度达到稳定状态。
3. 传感器信号处理原理,传感器输出的电压信号需要经过ECU进行信号处理,以便得到准确的氧气浓度信息。
ECU会根据传感器信号的变化来调整燃油喷射量,以保持发动机的正常工作状态。
总的来说,宽域氧传感器是发动机控制系统中非常重要的一个传感器,它的工作原理直接影响着发动机的燃烧效率和尾气排放。
因此,在使用和维护过程中,需要严格按照厂家的要求进行操作,定期检查传感器的工作状态,并及时更换损坏的传感器,以保证发动机的正常工作和环保排放。
氧探头的工作原理引言概述:氧探头是一种用于测量氧气浓度的传感器,广泛应用于工业、医疗、环境保护等领域。
了解氧探头的工作原理对于正确使用和维护氧探头至关重要。
本文将详细介绍氧探头的工作原理及其相关知识。
一、氧探头的基本原理1.1 氧探头的结构氧探头通常由氧传感器和信号转换电路两部分组成。
氧传感器是测量氧气浓度的核心部件,由氧敏感膜、电极和电解质组成。
信号转换电路负责将氧传感器测得的氧气浓度转换成电信号输出。
1.2 氧传感器的工作原理氧传感器利用氧敏感膜与氧气发生化学反应,产生一定的电流信号。
当氧气浓度较高时,氧敏感膜上的氧气与电解质中的离子发生反应,导致电流增加。
反之,当氧气浓度较低时,电流减小。
通过测量电流的变化,可以确定氧气浓度的大小。
1.3 信号转换电路的作用信号转换电路负责将氧传感器输出的微弱电流信号进行放大和转换,以便能够被其他设备读取和处理。
信号转换电路通常包括放大器、滤波器和模数转换器等组件,能够将氧传感器的输出信号转换成数字信号或模拟电压输出。
二、氧探头的应用领域2.1 工业领域氧探头在工业领域广泛应用于燃烧控制、气体检测和环境监测等方面。
例如,在燃烧控制中,氧探头可以测量燃烧过程中的氧气浓度,通过调节燃烧器的进气量,实现燃烧效率的优化。
2.2 医疗领域氧探头在医疗领域主要用于监测患者的血氧饱和度。
通过将氧探头安装在患者的手指或耳垂等部位,可以实时测量患者的血氧水平,并将数据传输给监护仪等设备,以便医生进行诊断和治疗。
2.3 环境保护领域氧探头在环境保护领域常用于空气质量监测和水质监测。
例如,在空气质量监测中,氧探头可以测量空气中的氧气浓度,从而评估空气的新鲜程度和污染程度。
在水质监测中,氧探头可以测量水体中的溶解氧浓度,帮助评估水质的好坏。
三、氧探头的使用注意事项3.1 避免高温和腐蚀环境氧探头通常对高温和腐蚀性气体非常敏感,因此在使用过程中应避免将氧探头暴露在高温和腐蚀性环境中,以免影响其性能和寿命。
氧传感器的故障分析与诊断摘要在电子燃油喷射的发动机中,都实现了闭环控制,进行反馈的传感器是氧传感器,通过检测尾气中氧的含量,来获取空燃比的信息,电脑依次对喷油器的喷油脉宽调制修正,使发动机在各种工作工况中获取最佳空燃比的混合气,减少汽车的污染排放,当氧传感器出现故障时,我们必须采用先进的维修方式,如通信式诊断、在线式诊断,从而节省了维修时间,提高了维修效率。
关键词空燃比闭环控制通信式诊断在线式诊断【前言】自2000年以后,在我国的电喷车型取代了化油器车型,并且在电控系统中都实现了带有学习功能的闭环控制,即在原来的开环控制的基础上增设了氧传感器,对系统进行有效的控制,并及时的反馈信息,电脑接收了良好的空燃比修正参数,使发动机在工作工况中得到了理想空燃比,同时当氧传感器出现故障时,给原来的维修带来了相当大的难度,从而使维修效率低下,因此我们必须转换和更新维修方式,本文通过对氧传感器的故障诊断,从而掌握通信式诊断、在线式诊断的应用方式。
一、汽车氧传感器的简介汽车氧传感器是电喷发动机控制系统中关键的传感部件,是控制汽车尾气排放、降低汽车对环境污染、提高汽车发动机燃油燃烧质量的关键零件,氧传感器均安装在发动机排气管上。
二、氧传感器的作用1、监测尾气中氧的浓度,并将信息反馈给ECU,调整喷油量和点火时间,从而实现发动机的最佳空燃比闭环控制。
2、确保三效催化转换器对排气中(HC)、(CO)和(NOX)三种染物有最大的转化效率。
三:氧传感器的分类构成目前汽车采用的氧传感器有氧化钛(TiO2)和氧化锆(ZrO2)两种形式。
并且氧传感器又分加热式和非加热式。
现代车辆大部分采用加热式氧化锆四线制的氧传感器。
1、氧化钛式氧传感器氧化钛式氧传感器的内部结构中,有2个氧化钛元件,1个是多孔性的二氧化钛陶瓷,用来检测汽车尾气中的氧的含量。
另1个是实心的二氧化钛陶瓷,用来加热调节,补偿温度的误差,在传感器外面套有带孔槽的金属防护套,传感器接线端子用橡胶作密封材料,防止外界气体渗入,它一般安装在排气歧管或排气尾管上。
宽带氧传感器工作原理
宽带氧传感器是一种用于测量氧气浓度的仪器,它常被应用于汽车尾气排放控制系统中,以监测废气的氧气含量并实时调整燃烧过程。
它的工作原理如下:
1. 测量原理:宽带氧传感器通过测量废气中氧气的浓度来判断燃烧过程的富燃或贫燃状态,从而控制燃烧效率和废气排放的净化处理。
2. 传感器结构:宽带氧传感器通常由一个氧离子导体、电极、加热元件和参考气室组成。
其中,氧离子导体是关键组件,它在高温下能够传递氧离子,并通过氧离子的扩散速率来测量氧气浓度。
3. 工作过程:当宽带氧传感器工作时,加热元件会提供恒定的加热功率,使氧离子导体保持在高温状态。
而参考气室中的氧气浓度被设计为恒定值,使得氧离子导体的一个侧面暴露在参考气室,另一个侧面暴露在待测气体(废气)中。
4. 电化学反应:当高温氧离子导体与氧气接触时,氧离子会向氧气浓度较低的方向扩散。
这个扩散过程会在氧离子导体两侧产生浓度梯度,从而引发电化学反应。
通过测量电化学反应产生的电流大小,就可以间接得知废气中氧气的浓度。
5. 信号处理:宽带氧传感器测量到的电流信号会被传感器的电子控制单元读取,并进行信号处理和数据解析。
根据测量结果,电子控制单元会相应地调整车辆的燃油喷射量、点火时机等参
数,以使燃烧过程达到最佳状态。
需要注意的是,宽带氧传感器的测量结果受到多种因素的影响,例如温度、湿度、气体流速等,因此在实际使用中需要进行校准和修正,以确保测量的准确性和可靠性。
氧传感器原理
氧传感器通过测量氧气浓度来确定气体或液体中的氧含量。
其工作原理基于氧分子在固体电解质表面的电离和还原。
下面是氧传感器的工作原理:
1. 锆氧电池传感器原理(ZrO2):
- 在两侧电极之间存在一个氧离子导体,通常是由氧化锆构成。
- 当传感器的一个侧面暴露在待测气体或液体环境中时,氧气分子会通过穿透金属屏蔽层并进入氧离子导体。
- 在导体表面,氧气分子会与导体中的自由氧离子结合形成氧离子,这些氧离子会在传感器电解质上建立电势差。
- 电势差通过两侧的电极之间的电阻读数来测量,由此可以得出氧气浓度的值。
2. 膜扩散型氧传感器原理:
- 传感器的一个侧面暴露在待测气体或液体环境中,传感器内部为气体分压系统。
- 氧气分子在待测气体和膜层之间扩散,通过气体分压差来影响传感器输出。
- 传感器上的半导体或电极被氧气分子吸附,从而改变电流或电势输出,用于测量氧气浓度。
这些氧传感器工作原理的共同点是使用传感器内部的氧离子导体或膜层与待测气体中的氧气发生反应,通过测量电势差或电
流变化进行氧气浓度的测量。
这些传感器在许多应用中被广泛使用,包括环境监测、医疗设备和工业领域等。
氧传感器工作原理
氧传感器是一种用于测量环境中氧气浓度的装置,它在许多领域都有着广泛的应用,包括汽车工业、医疗设备、环境监测等。
那么,氧传感器是如何工作的呢?本文将为您详细介绍氧传感器的工作原理。
氧传感器的工作原理主要基于电化学反应。
在氧传感器内部,有一根由稀有金属制成的氧化物电极和一根由铂制成的参比电极。
这两根电极之间填充着一种特殊的电解质,通常是氧化锆。
当氧传感器处于工作状态时,环境中的氧气会通过氧传感器的外壳进入到内部。
当氧气进入氧传感器内部时,它会与氧化物电极上的氧化物发生反应,这个反应会产生一种电流。
这个电流的大小与环境中氧气的浓度成正比,也就是说,当环境中的氧气浓度增加时,电流的大小也会增加。
氧化物电极上的电流会被传输到传感器的控制单元,然后被转换成一个数字信号,最终被显示在仪表盘上或者传输到其他设备上。
除了测量环境中的氧气浓度,氧传感器还可以用于控制发动机
的燃油混合物。
在汽车引擎中,氧传感器可以监测排气中的氧气浓度,然后将这个信息反馈给发动机控制单元。
根据这个信息,发动机控制单元可以调整燃油喷射系统的工作,从而保持最佳的燃烧效率,减少尾气排放,并提高汽车的燃油经济性。
总的来说,氧传感器的工作原理是基于电化学反应的。
通过测量氧化物电极上的电流大小,氧传感器可以准确地测量环境中的氧气浓度,并将这个信息转换成数字信号输出。
在汽车工业中,氧传感器还可以用于控制发动机的燃油混合物,从而提高燃烧效率,减少尾气排放。
这些特点使得氧传感器在现代工业中有着重要的应用价值。
氧传感器量程氧传感器是一种能够检测环境中氧气浓度的设备,通常被广泛应用于工业生产、环境监测以及生命科学领域。
而氧传感器的量程则是指其能够检测的氧气浓度范围,也是其性能和应用范围的重要指标之一。
氧传感器的量程通常是以百分比氧气浓度表示,比如0-100%的范围。
在工业生产过程中,氧传感器的量程通常需要根据具体的应用场景来确定。
在一些高温高压的工艺中,氧传感器需要具备更高的量程以确保对氧气浓度进行准确监测。
而在一些生命科学领域的研究中,对氧气浓度的监测范围则相对较窄。
氧传感器的量程不仅仅是一个数字,而是与传感器的灵敏度、响应速度以及稳定性密切相关的。
传感器的量程越广,表示其对氧气浓度的检测范围越广,但也可能导致传感器在某些特定范围内的性能表现不佳。
因此,在选择氧传感器时,需要根据具体的需求和应用场景来确定最合适的量程。
在工业生产领域,氧传感器的量程通常需要根据实际的氧气浓度情况来确定。
一些需要对低氧环境进行监测的工艺,可能需要选择量程较窄但灵敏度高的氧传感器,以确保监测的准确性和稳定性;而一些需要对高氧环境进行监测的工艺,则可能需要选择量程较广的氧传感器,以适应不同氧气浓度下的监测需求。
在环境监测领域,氧传感器的量程也扮演着重要的角色。
比如在大气环境监测中,氧传感器通常需要具备较广的量程以满足不同氧气浓度下的监测需求;而在水下环境监测中,对氧气浓度的监测范围则相对较窄,但对传感器的稳定性和耐腐蚀性要求较高。
在生命科学领域,氧传感器的量程对于研究生物体的呼吸代谢过程具有重要意义。
通过对细胞或者生物体内氧气浓度的监测,可以揭示生物体内呼吸代谢的相关规律和机制。
因此,对于生命科学研究人员来说,选择合适量程的氧传感器对于研究的可靠性和准确性至关重要。
总的来说,氧传感器的量程在其应用中扮演着重要的角色,不仅仅是传感器本身的一个参数,更是其在特定应用场景下性能和稳定性的关键指标。
在选择氧传感器时,需要综合考虑传感器的量程、灵敏度、响应速度以及稳定性等指标,以确保能够满足实际应用需求。
汽车氧传感汽车氧传感器(O2传感器)是一种能够测量汽车尾气中氧气浓度的传感器,广泛应用于汽车的排放控制系统中。
它的主要作用是通过监测排出氧气浓度的变化,来实时调节发动机燃烧室中的燃料供应,以达到更好的燃烧效果和降低尾气排放。
目前,常用的汽车氧传感器检测方法主要分为两种:电化学法和固体电解质法。
1.电化学法:这种方法是通过测量电气氧化还原反应(也称为红氧反应)来检测氧气的浓度。
传感器中包含两个电极,一个工作电极和一个参比电极,它们之间通过一个电解质介质分离。
当传感器处于工作状态时,工作电极会与汽车尾气中的氧气反应,产生一定的电流。
通过测量这个电流的大小,可以推断出尾气中的氧气浓度。
此方法具有响应迅速,精度高等优点。
2.固体电解质法:这种方法是通过固体电解质薄膜来检测氧气的浓度。
薄膜通常由氧离子导电材料如氧化锆或氧化钇等组成。
当尾气中的氧气分子通过薄膜时,会导致固体电解质发生离子传导,从而产生电流。
通过测量这个电流的大小,可以确定氧气的浓度。
这种方法具有稳定性好、抗干扰能力强等优点。
上述两种方法都是常见的汽车氧传感器检测方法,其原理和实现都有相应的技术难点,需要优化传感器结构、选择合适的材料和制备工艺等。
当汽车氧传感器工作时,会产生大量有关汽车排放和燃烧状态的数据。
这些数据对于汽车工程师和环境科学家来说是非常宝贵的。
通过分析这些数据,可以评估发动机的燃烧状况,检测潜在的问题,优化燃油供应策略,减少尾气排放。
然而,在读取和分析这些数据时,需要注意以下几个问题。
首先,由于汽车氧传感器的工作环境比较恶劣,可能会受到尾气中的污染物的干扰,导致测量结果的不准确。
其次,汽车氧传感器的寿命有限,需要定期更换。
最后,由于传感器的输出信号是模拟电信号,需要进行数字化处理,以便进一步分析和应用。
总结而言,汽车氧传感器是一种重要的汽车排放控制设备,可以通过电化学法和固体电解质法测量汽车尾气中的氧气浓度。
这些传感器产生的数据对于优化燃烧效果、降低尾气排放、保护环境等方面具有重要意义。
氧化锆氧传感器工作原理一、产品简介:氧化锆氧传感器是利用氧化锆陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。
它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。
运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。
二、氧传感器工作原理:氧传感器是利用稳定的二氧化锆陶瓷在650℃以上的环境中产生的氧离子导电特性而设计的。
在一定的温度条件下,如果在二氧化锆块状陶瓷两侧的气体中分别存在着不同的氧分压(即氧浓度)时,二氧化锆陶瓷内部将产生一系列的反应,和氧离子的迁移。
这时通过二氧化锆两侧的引出电极,可测到稳定的毫伏级信号,我们称之为氧电势。
它服从能斯特(Nernst)方程:式中E为氧传感器输出的氧电势(mv),Tk为炉内的绝对温度(K),P1和P2分别为二氧化锆两侧气体的氧分压。
实际应用时,将二氧化锆的一侧通入已知氧浓度的气本(通常为空气),我们称之为参比气。
另一侧则是被测气体,就是我们要检测的炉内的气氛,详见图1。
氧传感器输出的信号就是氧电势信号,通过能斯特方程我们就可以得到被测炉气氛中的氧分压和氧电势的关系。
参比气为空气时,可表示为:式中E为氧传感器输出氧电势;Tk为炉内的绝对温度;P02为炉内的氧分压。
我们的氧传感器产品带有自加热装置,一般温度保证在700℃,这样TK数值基本是恒定的,从而通过上式可以直接测量出炉内氧分压浓度。
工程应用中采用标准气体来标定氧传感器输出氧电势E和氧分压浓度PO2的对应关系,这种方法也是目前公认的最准确、最直接的标定方法。
第二部分 HMP系列氧传感器一.HMP氧传感器基本结构:HMP氧传感器的核心部件采用进口氧化锆氧传感器(详见图2),该氧化锆氧传感器自带智能加热装置,提供稳压恒定控制信号即可快速达到使用温度,并保证传感器在该恒定温度下连续、稳定工作。
离子流氧气传感器产品特点与简介
市场上的氧气传感器分为很多种,今天我们着重的讲一讲奥地利sensore 的离子流氧气传感器。
奥地利sensore电子提供两种不同类型的氧气传感器,并且它们都基于氧化锆原理的。
由于不同的物理性质,安培氧传感器或电势氧传感器可以根据应用和使用环境而使用。
深圳工采网代理奥地利sensore全线离子流氧气传感器,可以提供客户所需的所有传感器类型,可根据客户的具体应用和安装要求,定制不同的壳体设计和量程范围。
一、安培氧传感器
安培氧传感器的特征在于传感器的输出信号是一个由环境的氧浓度决定的电流值。
其特征可以表示如下:
Is (O2) 传感器器电流单位mA[O2] 氧气浓度[%]k 传感器特征常数
该氧传感器具有精度高、长期稳定性好,耐高温可达350℃,寿命长的特点。
典型的应用包括医疗应用(例如,制氧机,弥散式供氧,室内富氧终端)、工业(例如3D打印保护气体处理,气体纯化,电力开关室SF6泄漏分析)、食品和存储工业以及测量设备。
根据最佳性能的应用,特定的氧传感器可用于不同的测量范围。
10PPM-96%的量程范围可选。
例如,
10-1000PPM,长一米的螺纹型的氧气传感器,SO-D0-001-A100C。
汽车常用传感器的介绍
1、氧气传感器(Oxygen Sensor)
氧气传感器是汽车排放控制系统中重要的传感器,它可以测量汽车排放的氧气含量,主要用于控制汽车燃油的燃烧程度,改善发动机的排放性能,保持发动机的最佳性能,节省燃油,防止汽车制动后火花塞的损坏。
氧气传感器主要为双芯控制型传感器,在冷却剂以及排气管两端各设置一个传感器,当发动机启动时,热空气从排气管中流过传感器,传感器将热空气中含有的氧气的含量发送到ECU,ECU接收到氧传感器信号后,根据发动机负荷,控制一次喷射量,调整空气燃油比例,达到最佳燃烧状态。
2、温度传感器(Coolant Temperature Sensor)
温度传感器是负责检测发动机冷却液温度的一种电子设备,它通过测量冷却液在冷却系统内的温度,以实时反馈系统温度变化的信号,从而控制发动机温度,使发动机处于最佳的工作状态,避免发动机过热或过冷的问题。
温度传感器一般安装在发动机水箱出口处,它会将发动机冷却液的温度变化信息发送到ECU,ECU根据获取到的信息调整发动机的转速,保持发动机的最佳温度状态,有效地控制汽车油耗。
3、压力传感器(Pressure Sensor)
压力传感器是汽车发动机中常用的传感器。
一、氧传感器简介1. 氧传感器燃油反馈控制系统氧传感器是燃油反馈控制系统的重要部件,用汽车示波器观察到的氧传感器的信号电压波形能够反映出发动机的机械部分、燃油供给系统以及发动机电脑控制系统的运行情况,并且,所有汽车的氧传感器信号电压的基本波形都是一样的,利用波形进行故障判断的方法也相似。
2. 氧传感器与三元催化器发动机电脑利用氧传感器的输出信号来控制混合气的空燃比,即令空燃比总是在理论空燃比14.7的上下波动。
这不仅是发动机进行安全燃烧的要求,也是三元催化器中两种主要化学反应(氧化和还原)的需要。
要想优化氧化过程,就必须有足够的氧,也就是三元催化器需要稍稀的混合气;而为了优化还原过程,氧气量又必须少,为此,三元催化器又需要稍浓的混合气。
但混合气不可能同时既是浓的又是稀的,所以,汽车工程师在设计燃油反馈控制系统时将混合气设计成从稍浓至稍稀,再从稍稀至稍浓这样的循环变化,使碳氢化合物(HC)和一氧化碳(CO)氧化反应过程的需要和氮氧化合物(NOx)还原反应过程的需要都能得到满足。
由此可知,为了使燃油反馈控制系统正常工作,氧传感器输出的信号电压必须能够高、低变化。
发动机工作时,发动机电脑根据各种传感器(例如:空气流量计、进气压力传感器、节气门位置传感器等)的输入信号来计算混合气的空燃比并控制喷油器喷油,使空燃比十分接近14.7。
随后,发动机电脑又根据氧传感器的信号发出加浓或减稀的命令,这就使三元催化器的效率大大提高,同时又延长了它的使用寿命。
好的氧传感器是非常灵敏的,但其信号也极易受干扰。
若发动机有故障,氧传感器的输出信号一定会有反应。
所以,当氧传感器的信号电压波形正常时就可以断定整个发动机控制系统的工作是正常的或对发动机的修理是成功的。
在汽车示波器上进行氧传感器信号电压波形分析,通常称为氧反馈平衡测试(Oxygen Sensor Feedback Balance),简称O2FB。
二、氧传感器波形分析1. 基本概念:a.上流动系统(Upstream System)上流动系统是指位于氧传感器前的,包括传感器、执行器、发动机电脑的发动机各系统(包括辅助系统),即在氧传感器之前的影响尾气的所有机械部件和电子部件。
例如:进气系统、废气再循环系统、发动机电脑控制系统等。
b. 下流动系统(Down Stream System)下流动系统是指位于氧传感器后面的排气系统部分,包括三元催化器、排气管和消声器等。
c. 闭环(Close Loop)闭环控制应用在汽车上是在电控汽车出现以后才有的。
我们这里所讲了闭环是指在燃油控制系统中,发动机电脑根据氧传感器的反馈信号不断调整混合气的空燃比,使其稳定在理论空燃比14.7附近的过程。
2. 氧传感的失效过程在氧反馈平衡的测试中,首先就是测试氧传感器的输出信号,由于汽车尾气及排气温度的原因,使氧传感器的工作条件极其恶劣。
因此造成一般无加热器的氧传感器的寿命约为5~8万公里,而有加热器的氧传感器的寿命比无加热器的氧传感器长3万公里。
氧传感器的失效过程都是缓慢进行的,首先是它的响应速度变慢,输出信号的幅度变低,最后是输出信号不变化或完全没有信号输出。
这时就会有故障代码出现,发动机检查灯或故障指示灯也会亮。
除了由于使用年限或行驶里程的增加而导致氧传感器的正常失效外,氧传感器还可能因汽油中含铅或冷却液中的硅胶腐蚀而提前失效,氧传感器的衬垫在维修过程中被拆掉所造成的尾气泄漏也会导致氧传感器提前失效。
还有一些潜在的因素,例如燃油压力过高、喷油器损坏、发动机电脑和传感器损坏以及操作不当等,也都可能导致氧传感器提前失效。
然而,导致氧传感器提前失效的首要原因是由发动机混合气过浓所造成的炭堵塞。
3. 氧传感器的信号电压通常有这样的说法,即在诊断燃油反馈控制系统之前应启动发动机,直至它进入“闭环”状态。
在有些书中则写道:“启动发动机后要让它在2500r/min运转2~3min,直到氧传感器产生变化的电压信号。
”这使许多技术人员认为氧传感器会自动产生变化的信号电压。
事实上是,氧传感器信号电压的变化是由尾气中氧含量的变化所引起的。
发动机电脑通过调整喷油器的喷油量来改变混合气的浓稀时,自然造成尾气中氧气含量相应变化,即混合气浓时,氧含量减少,反之则氧气含量增加。
改变混合气也改变了尾气中的氧含量,安装在排气管中的氧传感器感知到这个变化后,便输出相应的、不同的电压信号。
因此,如果氧传感器输出的电压信号不正常或根本不变,并不意味着必须更换氧传感器。
因为还有一个可能是上流动系统出现了故障(某些部件损坏)。
如果尾气中的氧含量不发生变化(例如固定在浓或固定在稀状态),那么,即使按照要求将发动机以2500r/min的转速运转2~3min,氧传感器的信号电压值也是不会发生变化的。
汽车示波器显示的氧传感器信号电压波形相当于对病人检查时做的心电图,从心电图上可以看到脉搏跳动的状况,而从氧传感器的信号电压波形图上则可以看出汽车燃油反馈控制系统的状况棗是否工作或进入了闭环状态。
图1表示在发动机启动后氧传感器输出的信号电压。
由图可见,波形先逐渐升高到450mV,然后进入升高和下降(混合气变浓和变稀)的循环。
后面波形的波动表示燃油反馈控制系统进入了闭环状态。
当然,只有当氧传感器在无故障时电压波形才能反映燃油反馈控制系统的状况;如果氧传感器有故障,那么它所产生的波形就不一定反映的是燃油反馈控制系统的状况了。
由于氧传感器所处的环境比心电图仪的传感器所处的环境差得多,所以在观察氧传感器波形前必须先测试氧传感器本身,即必须在确认其本身是否正常后,才能对氧传感器的信号波形进行诊断分析,这就是在氧反馈平衡测试步骤中第一步要测试氧传感器的原因。
三、氧传感器的检查1. 加热线电压的检查在实践中,我们一般会遇到以下几类氧传感器:1线、2线、3线、4线。
而现在大部分电控汽车使用的都是3线或4线加热式氧传感器。
因此,对于这一类氧传感器首先应检查加热线的电压是否正常,即在打开点火开关或启动发动机后应有12V电压。
如果没有加热电压,则氧传感器必然工作不良。
2. 氧传感器内加热电阻的检查如果加热线电压正常,则接下来应检查氧传感器内加热电阻的好坏。
一般正常值为几欧姆,如果加热电阻无穷大或为零,则说明电阻开路或短路,这样势必造成氧传感器工作不良。
3. 接地线的检查:1线式氧传感器靠本身与排气管形成接地回路,对于2线式氧传感器,一般黑色线为接地线,测量其接地压降,应小于100mv为好,3线式氧传感器与2线式氧传感器的检测方法相同。
对于4线式氧传感器,由于它有两根接地线,一根为加热线的接地线,另一根为信号线的接地线,因此两根接地线应分别测量,以确定其是否正常。
做完以上的检查,则基本上可以断定传感器本身是否工作良好,以便为接下来的氧传感器信号测试做准备。
因为以上任何一项检查如果有问题,都将导致氧传感器工作不良,而使其输出信号电压失准或没变化,从而使对氧传感器信号的测试失去意义。
4. 氧传感器信号的测试测试氧传感器有两种常用方法:丙烷加注法和急加速法。
1)丙烷加注法氧传感器信号测试中有3个参数(最高信号电压、最低信号电压和混合气从浓到稀时信号的响应时间)需要检查,只要在这3个参数中有1个不符合规定,氧传感器就必须予以更换。
更换氧传感器以后还要对新氧传感器这3个参数进行检查,以判断新的氧传感器是否完好。
测试步骤(氧化钛型传感器和氧化锆型传感器都适用)如下:a.连接并安装加注丙烷的工具。
b.把丙烷接到真空管入口处(对于有PCV系统或制动助力系统的汽车应在其连接完好的条件下进行测试)。
c.接上并设置好汽车示波器。
d.启动发动机,并让发动机在2500r/min下运转2~3min。
e.使发动机怠速运转。
f.打开丙烷开关,缓慢加注丙烷,直到氧传感器输出的信号电压升高(混合气变浓),此时一个运行正常的燃油反馈控制系统会试图将氧传感器的信号电压向变小(混合气变稀)的方向拉回,然后继续缓慢地加注丙烷,直到该系统失去将混合气变稀的能力。
接着再继续加注炳烷,直到发动机转速因混合气过浓而下降100~200r/min。
这个操作步骤必须在20~25s内完成。
g.迅速把丙烷输入端移离真空管,以造成极大的瞬时真空泄漏(这时发动机失速是正常现象,并不影响测试结果),然后关闭丙烷开关。
h.待信号电压波形移动到示波器显示屏的中央位置时锁定波形,测试完成。
接着就可以通过分析信号电压波一个好的氧传感器应输出如图2所示的信号电压波形,其3个参数值必须符合表1所列的值。
一个已损坏的氧传感器可能输出如图3所示的信号电压波形,其中,最高信号电压下降至427mV,最低信号电压<0,混合气从浓到稀时信号的响应时间却延长为237ms,所以这3个参数均不符合标准。
用汽车示波器对氧传感器进行测试时可以从显示屏上直接读取最高和最低信号电压值,并且还可以用示波器游动标尺读出信号的响应时间(这是汽车示波器特有的功能)。
汽车示波器还会同时在其屏幕上显示测试数据值,这对分析波形非常有帮助。
如果有关闭丙烷开关之前,发动机怠速运转时间(即混合气达到过浓状态的时间)超过25s,则可能是氧传感器的温度太低,这不仅会使信号电压的幅值过低,而且还会使输出信号下降的时间延长,造成氧传感器不合格的假象。
因此,在检测前应将氧传感器充分预热(即让发动机在2500r/min下运转2~3min)。
如果发动机仅怠速运转5s,就可能有1个或多个参数不合格,而这个不合格并不说明氧传感器是坏的,只是测试条件没有满足的缘故。
多数损坏的氧传感器都可以从其信号电压波形上明显地分辨出来,如果从信号电压波形上还无法准确地断定氧传感器的好坏,则可以用示波器上的游动标尺读出最大和最小信号电压值以及信号的响应时间,然后用这3个参数来判断氧传感器的好坏。
(未完待续)(2)急加速法对于一些1988年以后生产的汽车,用丙烷加注法测试氧传感器是非常困难的,因为这些汽车的发动机控制系统具有真空泄漏补偿功能(采用速度密度方式进行计量空气流量,如安装正气压力传感器等),能够非常快地补偿较大的真空泄漏,所以氧传感器的信号电压不会降低。
这时,在测试氧传感器的过程中一般要用手动真空泵制造出一定的真空度,使进气压力传感器感测到的压力保持稳定,然后再用急加速法来测试氧传感器。
急加速法测试步骤如下:a. 以2500r/min的转速预热发动机和氧传感器2~6min,然后再让发动机怠速运转20s。
b. 在2s内将发动机节气门从全闭(怠速)至全开1次,共进行5~6次。
但是,不要使发动机空转转速超过4000r/min,只要用节气门进行急加速和全减速就可以了。
c. 定住屏幕上的波形(见图4),接着就可根据氧传感器的最高、最低信号电压值和信号的响应时间来判断氧传感器的好坏。